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An analytic model to study perturbation evolution in the space between a corrugated shock and a piston
surface is presented. The conditions for stable oscillation patterns are obtained by looking at the poles of the
exact Laplace transform. It is seen that besides the standard D’yakov-Kontorovich(DK) mode of oscillation,
the shock surface can exhibit an additional finite set of discrete frequencies, due to the interaction with the
piston which reflects sound waves from behind. The additional eigenmodes are excited when the shock is
launched att=0+. The first eigenmode(the DK mode) is always present, if the Hugoniot curve has the correct
slope in theV-p plane. However, the additional frequencies could be excited for strong enough shocks. The
predictions of the model are verified for particular cases by studying a van der Waals gas, as in the work of
Bates and Montgomery[Phys. Fluids 11, 462 (1999); Phys. Rev. Lett.84, 1180 (2000)]. Only acoustic
emission modes are considered.
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I. INTRODUCTION

The study of shock waves is a subject of great theoretical
and practical importance in hydrodynamics and related
fields. Extensive use has been and is still being made of
shock waves to study the properties of gases, liquids, and
solids at high pressures and temperatures for equation of
state(EOS) measurements[1–3]. Subsidiary to these experi-
ments we face the problem of shock front stability when
subjected to corrugations of small amplitude. In fact, the
growth or decay of the perturbations imposed at the surface
of the shock is an issue of fundamental importance that has
fascinated the scientific community during the last 50 years.
We could find perturbed shock fronts in astrophysical phe-
nomena[4], geophysical experiments[5], and inertial con-
finement fusion(ICF) implosions[6–9]. The hydrodynamic
fluctuations generated by deformed shock waves could actu-
ally trigger deleterious hydrodynamic instabilities in ICF tar-
gets, namely, the Richtmyer-Meshkov(RM) and the
Rayleigh-Taylor(RT) instabilities[9–19]. The first theoreti-
cal works that dealt with the stability properties of corru-
gated shock fronts are those of Roberts[20], D’yakov [21],
and Kontorovich[22,23] The early work of Roberts studied
the evolution of a corrugated shock wave that moved into an
ideal gas. He showed that the initial ripple at the shock sur-
face would eventually show damped oscillations as the shock
moved away from the interface and the shock surface would
regain the planar shape. The solution was analytical and
made use of Laplace transforms of the fluid equations in the
linear approximation. On the other hand, the works of
D’yakov and Kontorovich studied the interaction of a planar
shock front with sound waves that collided with the shock
from either ahead or behind, and made an eigenmode analy-
sis of the perturbations that develop at the corrugated front.
They obtained explicit conditions for stability in terms of the
shock front Mach number, density compression ratio, and the
slope of the Rankine-Hugoniot curve at the final compres-
sion state. In particular, they derived an explicit criterion
(from now on we call it the DK criterion) in order for the
corrugations at the shock wave to show a stable oscillatory

behavior as a function of time. That is, their result gives
sufficient and necessary conditions for the shock front to
oscillate with a characteristic frequency without damping,
the so called spontaneous acoustic emission(SAE) and is
expressed for a general equation of state. The same problems
were later studied in detail by Erpenbeck[24], Fowles, and
Swan [25–28]. Recently, the subject of shock stability has
also seen a renewed interest as it can provide important in-
sights into the dynamics of shock waves propagating in met-
als [29], diatomic gases[30,31], and in situations of astro-
physical interest[32]. The problem of shock stability in ideal
gases has been investigated again in a recent work by Robi-
net et al. [33]. All the previous works have emphasized the
importance of the slope of the Hugoniot curve in order to
study the stability properties of the shock wave. As usual, let
us consider the quantity

h =
p1 − pf

V1 − Vf
SdV

dp
D

H
. s1d

The quantityV is the specific volume of the fluid. The sub-
script “f” refers to the final compressed state and the sub-
script “1” refers to the initial state of the fluid. The derivative
is taken along the Hugoniot curve and calculated at the final
compressed state. The work of D’yakov and Kontorovich
showed that the condition for the emission of undamped
sound waves from the shock surface is

hc , h , 1 + 2Mf , s2d

whereMf is the shock wave Mach number with respect to
the compressed fluid, andhc is defined by

hc =
1 − Mf

2s1 + r f /r1d
1 − Mf

2s1 − r f /r1d
, s3d

with r f the density of the compressed fluid, andr1 the initial
density before shock compression. Ideal fluids do not satisfy
the previous inequality and hence there is no possibility of
observing acoustic emission in ideal gases. On the contrary,
some other substances with nonideal equations of state may
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satisfy the previous inequality in some domain of the space
of physical parameters[1–7,21–31].

The usual approach to derive the above inequality consists
in perturbing the shock surface and doing a normal mode
analysis for the perturbations in the compressed fluid. All
perturbed quantities behind the shock surface are assumed to
depend on the spatial and temporal coordinates in the sepa-
rable form[1]

dfsx,y,td ; A expfiskxx8 + kyy8 − vtdg, s4d

where df represents the linear perturbation of any fluid
quantity f. The coordinatex8 is in the direction normal to
the shock front where the positivex8 axis points inside the
compressed fluid. The coordinatey8 is in the tangential di-
rection. Equation(4) is proposed in a reference frame mov-
ing with the shock surface. The quantitieskx andky are the
projections of the perturbation wave number along the coor-
dinate axis andt is the time. The Rankine-Hugoniot condi-
tions are linearized around the final state and a dispersion
relation is obtained that enables us to calculate the frequency
of the oscillations as a function of the wave number. Usually,
far behind the shock(namely, the piston surface), all the
perturbations are assumed to vanish[1,5,22,25,31] in order
that the perturbation field be bounded in the whole space.
Adopting this approximation, the usual DK stability criterion
is obtained for the emission of undamped acoustic waves
[1,5,22,25]. In the present work we relax this boundary con-
dition far behind the shock. In fact, as is already known from
the research done in the RM instability, the dependence of
the perturbed quantities on the variablesx and t may not be
always written in the separable form as expressed in the pre-
vious Eq.(4). The reason is that one of the boundaries(either
the shock front or the piston surface) is moving in time and
therefore the domain of integration is not square as in thex,t
space. The consequence is that we cannot use separation of
variables in thex,y,t space to integrate the wave equation.
As a matter of fact, the exact solution to the wave equation in
the space between the piston and the shock is written as
[8,10,33–36]

dfsx,y,td = f1„scf t − xd/scf t + xd…f2„k
2scft − xd

3scf + xd…cosky, s5d

where f1 and f2 are suitable functions that must be deter-
mined from the boundary and initial conditions at both the
shock front and the piston surface[10,12]. The quantityk is
the piston perturbation wave number, which is equal to
2p /l, andl is the perturbation wavelength. In principle, the
previous solution would not look like Eq.(4) in the general
case. We must stress the fact that, even if the approximate
form adopted in Eq.(4) is used, the DK criterion[Eqs. (2)
and(3)] is, however, correct. The reason is that the DK mode
of oscillation does not actually interact with the shock after
reflection at the piston surface. That is, when Eq.(2) is sat-
isfied, the shock emits sound waves at the DK frequency, and
those waves would reach the piston and reflect there. How-
ever, the angle of reflection would be such that the reflected
sound wave would never catch the shock, because the pro-
jection of the velocity of the sound wave along the direction

normal to the shock will always be less than the shock speed
itself [23]. This means that the DK shock mode of oscillation
does not couple piston and shock. Therefore, as far as the
evolution of this mode of oscillation is concerned, the exact
boundary condition at the piston is irrelevant. Actually, the
corrugated piston is only necessary(at t=0+) in order to ex-
cite the DK oscillation mode. Immediately afterward, any
sound wave emitted with frequency and wave vector corre-
sponding to the DK mode would be reflected some time later,
without hitting the shock ever again. This fact explains the
accuracy of all the previous work in getting the DK mode
while “forgetting” the piston surface. However, this approxi-
mate boundary condition at the piston surface does not allow
for the mathematical solution to display the additional modes
of oscillation of the shock front that can be excited at higher
shock intensities. We know that, depending on the boundary
condition we require at the piston surface, the structure of the
perturbation field behind the front could be different
[9,10,37,42]. It will be seen later that, in addition to the
expected DK mode of oscillation, additional modes for
acoustic emission could appear and the shock front ripple
would oscillate as a result of the superposition of all those
modes. In order for the shock to oscillate with these addi-
tional eigenfrequencies, the standard DK criterion[Eq. (2)]
needs to be modified and the lower bound would be another
function of the shock compression ratio and the shock Mach
number. This phenomenon occurs for relatively strong
shocks. Similar conclusions can be obtained for the pertur-
bations at the piston. We could find zones in the space of
physical parameters in which the pressure perturbations at
the piston also show stable oscillations, as a result of con-
structive interference of the wave pattern that fills the space
behind the shock.

Up to now, the perturbation problem has always been
solved by considering the evolution of a single isolated
shock. Due to the inherent mathematical difficulties of in-
cluding a reflecting piston in the space behind the shock, the
possible generalization of Eq.(2) in this case has never been
considered for an arbitrary EOS. It is usually assumed that
piston and shock separate quickly from each other, and there-
fore any asymptotic solution that appears for sufficiently
large times will not feel the piston causal influence. How-
ever, as will be shown in the rest of the work, stable acoustic
emission modes(either the classical DK mode, or the ones
found in this work) are excited at the shock surface sincet
=0+. That is, when the shock and piston are still very near
each other. As a matter of fact, the perturbation at the shock
can always be thought of as a superposition of the form
dpSAEstd+dpdecstd, valid in the whole interval 0+ø t,`.
The functiondpSAEstd is the possible oscillating contribution
from the acoustic emission modes, anddpdecstd is that part of
the solution that decays in time. In fact for an ideal gas, it is
alwaysdpSAE;0, and we only get the well known decaying
oscillations, which behave likedpdecstd, t−3/2 for large times
[10]. On the contrary, for another EOS, we could see a non-
zero stable contributiondpSAEstdÞ0. These stable perturba-
tions could be the result of oscillations with only one fre-
quency(as in the standard DK situation) or even with more
frequencies(due to the effect of the right facing sound waves
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impinging on the shock and assuming that the Hugoniot
curve has the correct slope in the pressure-volume plane, and
the shock intensity is high enough). It will be shown that
these additional stable modes can be excitedonly if we in-
clude the shock-piston interaction in the formulation of the
problem. Of course, if the Hugoniot curve has not an ad-
equate slope for the additional set of waves to appear, only
the standard DK waves will show up[when Eq.(2) holds]. It
is therefore clear that the standard DK criterion should be
generalized to include the effect on the shock evolution of
the sound waves reflected at the piston. The results obtained
here are based on exact and rigorous linear theory, as already
used to solve the linear perturbation problem of the RM in-
stability [37,38].

This work is organized as follows. In Sec. II the exact
solution in the space of physical coordinatesx,y,t is ob-
tained. The Laplace transform of the pressure perturbations
is also calculated as a solution of a functional equation. The
limits of validity of the solution are discussed. The stability
properties of the flow are examined in Sec. III by looking for
the poles of the Laplace function. Only the specific case of
spontaneous acoustic emission is considered. The additional
spectrum for the shock front oscillations is derived analyti-
cally. In Sec. IV the results of the preceding sections are
calculated in analytical form and used to study a real gas
equation of state as in Refs.[6,7]. The frequencies and mode
amplitudes are compared with the results of the linear series
expansion deduced in Sec. II. A qualitative discussion of the
results and a comparison with the findings of previous works
is given in Sec. V. A brief summary is presented in Sec. VI.

II. PRESSURE PERTURBATION FIELD BETWEEN THE
PISTON AND THE SHOCK FRONT

A. Wave equation

In Fig. 1 we show the geometry of the shock and the
piston surface. In the laboratory frame of reference, the pis-
ton starts suddenly to move att=0 with velocityvpx̂. As the
surface of the piston is corrugated, a perturbed shock front
will be launched att=0+ that moves to the right with velocity

ux̂. It is convenient to study the hydrodynamic perturbations
in a system in which the piston surface is at rest. From now
on, we will work in the piston reference frame. Therefore,
the shock moves to the right with velocityusx̂=su−vpdx̂
compressing the fluid from its initial densityr1 to its final
value r f. The fluid has a velocity −v1x̂ ahead of the shock
and comes to rest after crossing the shock front. We consider
an arbitrary EOS for the fluid and do not restrict the model to
ideal gases. The sound speed of the compressed fluid iscf.
The piston wall has a corrugation of wavelengthl and am-
plitude c0. We assume linear perturbations, so thatc0!l.
As the shock moves away from the piston, the amplitude of
its ripple will change in time. Depending on the properties of
the fluid being compressed, the ripple amplitude could decay,
show stable oscillations or actually grow. We will concen-
trate on the conditions that enable the shock front ripple to
oscillate with a characteristic frequency.

We linearize the fluid equations, assuming that the depen-
dence on they coordinate scales like cosky for the pressure
perturbationsdpsx,y,td. In order to solve the equations by
separation of variables, we use the following coordinate
transformation, as suggested by Zaidel’[34–37]: r coshu
=kcft, r sinhu=kx. The shock wave coordinate is defined by
bs=tanhus=us/cf ,1. The piston surface is defined byup
=0. After some algebra, the fluid equations can then be com-
bined into a wave equation for the dimensionless pressure
fluctuationsdp̂, in the new coordinates[37,38]

r
]2dp̂

]r2 +
]dp̂

]r
+ rdp̂ =

]

]u
S1

r

]dp̂

]u
D , s6d

where dp̂ is defined bydpsx,y,td=r fcf
2dp̂sx,tdcosky. The

equation above can be solved in two different ways. The
simplest one consists in solving it in the physical spacer ,u
by means of series of Bessel functions. The coefficients of
the expansion are determined from the boundary conditions
at the shock and at the piston, in much the same way as has
been done to study the RM instability[36,39]. The other
approach consists in Laplace transforming the wave equation
and the boundary conditions. In this way, a functional equa-
tion for the Laplace transform of the pressure fluctuations at
the shock front is readily obtained. As for the series expan-
sion solution, it is easy to see that the following function is
the most general solution of the wave equation that satisfies
dpst=0+d=0 [8,34–36,39]:

dp̂ = o
n

DnsudJnsrd. s7d

The functionsJn are the ordinary Bessel functions[40]. The
coefficientsDn are functions of the coordinateu and must be
determined with the boundary conditions. As already dis-
cussed in Refs.[36–38] they are given byDn=pn coshnu,
where pn have to be determined from the shock boundary
conditions.

B. Boundary conditions at the shock front

At the initial instant of time, the shape of the shock front
will reproduce the corrugation at the piston wall. Therefore,

FIG. 1. Corrugated shock front moving ahead of a corrugated
rigid piston. The piston has a transverse corrugation of amplitudec0

and wavelengthl. For explanation of the symbols, see the text of
the paper.
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let csstdcosky be the shock front ripple. Its amplitudecsstd is
a function of time and its initial value isc0. For the sake of
simplicity in the notation, let us define the dimensionless
velocity perturbations du and dv by dvxsx,y,td
=dusx,tdcosky, dvysx,y,td=dvsx,tdsinky and the dimen-
sionless density perturbation dr̂ by drsx,y,td
=dr̂sx,tdcosky. After some algebra with the linearized
Rankine-Hugoniot equations, the boundary conditions at the
shock front can be combined into a single equation that
couples both the shock front ripple and the pressure pertur-
bation, in ther ,u coordinates[12,37,39]:

W1S ]dp̂

]r
D

us

=
W2

r
S ]dp̂

]u
D

us

+
E

coshus
js, s8d

wherejs=kcs, and the equation forjs is

]js

]r
=

1

2bs

sh + 1dcoshus

1 − r1/r f
sdp̂dus

. s9d

The constantsW1,2 andE are

W1 = −
s1 − bs

2dsh − 1d
1 + 2bs

2 − h
, W2 = −

2bss1 − bs
2d

1 + 2bs
2 − h

, E =

−
2bs

2

1 + 2bs
2 − h

v1

cf
. s10d

Equations(8) and (9) are the boundary conditions at the
shock front. To find the coefficients of the series expansion
[Eq. (7)], it is better to work with the Laplace transform of
the perturbations at the shock front[39]. We previously de-
fine the Laplace transform of any perturbed quantitydfsr ,ud
(from now on, Laplace transforms are indicated with capital
letters) as

dFss,ud =E
0

`

dr e−srdfsr,ud, s11d

and change to the new variableq defined bys=sinhq, as
suggested by Zaidel’[33]. After some algebra, we find the
coefficientsp1 andp3 [39]:

p1 = 2Ej0, s12d

p3 =
2sW1 + 2EAdcosh2 us + 1

sW1 − W2 tanh 3usdcoshus cosh 3us
p1. s13d

The other coefficients are found after solving the recurrence
equation

p2n+1 =
2sW1 + 2EAdcoshs2n − 1dus

fW1 − W2 tanhs2n + 1dusgcoshs2n + 1dus
p2n−1

−
fW1 + W2 tanhs2n − 3dusgcoshs2n − 3dus

fW1 − W2 tanhs2n + 1dusgcoshs2n + 1dus
p2n−3,

s14d

whereA=1/s2bsdsh+1d / f1−sr1/r fdg.

C. Functional equation for the Laplace transform of the
pressure perturbations

After some algebra, and using the fact that our piston is a
rigid wall, the Laplace transforms of the pressure perturba-
tions at the shock can be seen to satisfy the functional equa-
tion [37]

dPssqd = l1sqd + l2sqddPssq + 2usd, s15d

where the functionsl1,2 are given by

l1sqd =
a2sqd + a2sq + 2usd

coshq − a1sqd
,

s16d

l2sqd =
coshsq + 2usd + a1sq + 2usd

coshq − a1sqd
.

The auxiliary functionsa1,2 are

a1sqd = a10 sinhq +
a11

sinhq
, a2sqd = − dv0

sinhus

sinhq
, s17d

where the important parametersa10 anda11 are given by

a10 =
h − 1

2bs
, a11 = −

bs

2

h + 1

1 − bs
2

r f

r1
, s18d

and dv0 is the initial lateral fluid velocity in the space be-
tween the shock and the piston(at t=0+), given by dv0
=v1kc0. Equation(15) is an inhomogeneous linear functional
equation of the first order[42,43]. The most general solution
to it is the sum of a solution to the homogeneous equation
plus a particular solution[34,42,43]. In this case, it is
straightforward to find a particular solution. It is the result of
an iterative sequence[37,42,43]

dPssqd = l1sqd + o
j=1

`

l1sq + 2jusdp
n=0

j−1

l2sq + 2nusd. s19d

Regarding the homogeneous solution[34,42,43], it is clear
that it satisfies an equation of the formdPhsq+2usd
=dPhsqd /l2sqd. As dPs is a Laplace transform, it is clear that
it should vanish when Req→`. This will happen only when
ul2u.1. This last condition is equivalent to asking for
h.1−2bs

2. Therefore, ifh is bounded from below as in the
last equation, the solution to the homogeneous equation
should be added in Eq.(19). If, on the contrary,h,1−2bs

2,
the solution to the homogeneous equation is divergent and
must be excluded from the general solution. In this work we
will only study situations in whichh,1−2bs

2. Therefore, we
take Eq.(19) as the complete andexactsolution to the two-
dimensional(2D) perturbation problem of a shock traveling
into an undisturbed fluid driven by a reflecting piston. The
cases that satisfyh.1−2bs

2 are left for future research.

III. SPONTANEOUS ACOUSTIC EMISSION

A. Poles of the pressure function at the shock front

1. Standard DK mode of oscillation

As can be seen from the definitions ofl1,2 [Eqs.(16)], the
term fcoshq−a1sqdg is a common denominator to all the
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terms in the right hand side of Eq.(19). Therefore, its poles
give the information about the stably oscillating part of the
solution in thex, t space. We remember that we are looking
for the zeros which are pure imaginary numbers. It is noted
that the commented factor can also be written as 1/fÎs2+1
−a1ssdg in terms of the Laplace variables. Therefore, we
keep in mind that we must work with the positive determi-
nation of the square root. Let us make the variable change

s=
1

2
Sea+ib −

1

ea+ibD s20d

in terms of some new auxiliary variablesa andb. If we are
looking only for purely imaginary solutions in the variable
s, then it is immediate to see thatb= ± ip /2. Then, s
= ± si /2dsea+e−ad and Îs2+1= ±si /2dsea−e−ad. In order to
deal only with the positive determination of the square root,
we must requirea.0. Then, our equation looks like

1

2
Sea −

1

eaD =
a10

2
Sea +

1

eaD −
2a11

ea + 1/ea , s21d

or

Îb2 − 1 =a10 b −
a11

b
, s22d

where b=sea+e−ad /2.1. The last equation has a solution
depending on the values ofa10 anda11. Let us first assume
that botha10 anda11 are negative numbers. This is equiva-
lent to saying that the D’yakov-Kontorovich parameter de-
fined in Eq. (1) satisfies simultaneously:h,1 and h.−1
[see Eqs.(18)]. If we want to have SAE under these condi-
tions, the function defined by the left hand side of Eq.(22)
must intersect the right hand side at some value ofb. Let the
auxiliary function f be defined by fsbd=a10 b−sa11/bd.
Then, according to Fig. 2(a), a solution is possible only if
fsb=1dù0. According to Eqs.(18) this is equivalent, after
some algebra, to requiring thathc,h, with hc the parameter
defined in Eq.(3). It is easy to prove thathc.−1 does al-
ways hold. Otherwise, we would obtainbs.1 which is not
possible for a compressive shock[1,2,26,27]. That is, for this
special case, the condition for SAE is

hc , h , 1. s23d

The next case is that in whicha10.0. We must distinguish
between 0,a10,1 anda10.1. In the first case, it must be
that 1,h,1+2bs which implies necessarily thata11,0
[according to Eqs.(18)]. This situation is shown in Fig. 2(b),
and there is one possible solution again, iffsb=1dù0, which
implieshc,h. If a10.1 it is clear from the figure that there
is no intersection for the curves, and hence no possibility of
SAE. If a11.0, we haveh,−1, which makesa10,0. This
situation is shown in Fig. 2(c) and it is clear that there is no
possibility of intersection between the curves drawn there.
That is, there is no acoustic emission forh,−1. If both a10
and a11 are positive numbers, we should simultaneously
haveh.1 andh,−1, which is impossible. Then, regarding
the first shock eigenmode, we have arrived at the well known
condition for acoustic emission summarized in Eq.(2). How-
ever, it is noted that the inequalityhc,h,1+2bs is actually

the union of two disjoint intervals. The first segment
fhc,h,1g corresponds to situations that havea10,0, and
the second segmentf1,h,1+2bsg to situations in which
0,a10,1. At least for the van der Waals gas cases studied
in Sec. IV, only the first segment is always realized. We do
not know if there is any Hugoniot curve that can realize both
situations. Anyway, the common way of summarizing the
standard criterion for SAE is to write the general Eq.(2)
which results from the union of these two disjoint intervals.
In addition, we recall that we do not include the solution to

FIG. 2. (a) Conditions for the existence of an imaginary com-
plex pole fordPs. The curves drawn correspond to the casea10,0
and a11,0. For explanation of the symbols, see the text of the
paper.(b) Same as(a), but the curves drawn here correspond to the
case 0,a10,1 anda11,0. For explanation of the symbols, see
the text of the paper.(c) Same as(a), but the curves drawn here
correspond to the casea10,0 anda11.0. For explanation of the
symbols, see the text of the paper.
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the homogeneous functional equation, which makes our ap-
proach valid only in the rangehc,h,1−2bs

2. For situations
in which h.1−2bs

2 the solution to the homogeneous equa-
tion could add additional modes of oscillation in addition to
the modes found here. These cases will be studied in future
work. Finally, before finishing this section, we solve Eq.(21)
in order to get the frequency of the oscillation mode. It is not
difficult to get a second order polynomic equation for the
quantitye2a. We obtain, after some algebra,

T0 ; e2a0 =
a10 − 2a11 + Î1 + 4a11sa11 − a10d

1 − a10
, s24d

where only the positive solution fora has been kept, that is,
T0.1. Then, the only two imaginary poles are ±is0, where

s0 =
1

2SÎT0 +
1

ÎT0
D . s25d

Regarding the poles ±is0, they correspond to the mode pre-
dicted by the DK criterion[1,3,5–7,21–33]. However, we
also have additonal denominators which show a shift in theq
variable. For example, the factor 1/fcoshsq+2usd−a1sq
+2usdg appears from the second term on, and factors of the
form 1/fcoshsq+4usd−a1sq+4usdg appear since the third
term, and so on. Physically speaking, for very weak shocks,
the first terml1sqd would be more than enough to describe
the perturbation field in the whole space with negligible er-
ror. That is, the additional terms, which are the functionsl1
andl2 evaluated at values ofq shifted by multiples of 2us,
become negligible and can be safely ignored. Thus, there are
no additional poles besides ±is0 for weak shocks. However,
as the shock intensity increases, the shifted functions inside
the solutiondPs become as important as the first nonshifted
l1sqd function. This is because, as the shock wave intensity
increases, the downstream shock Mach numbersbsd de-
creases, and the interaction with the piston becomes more
important. This fact is reflected by the parameterus inside
the argument of thel1,2 functions, which arise due to the
Doppler shift after reflection of the sound waves coming
from the piston on to the shock surface. The parameterus is
a monotonically decreasing function of the Mach number.

For very weak shocks, the terms likel1,2sq+2nusd with n
ù1 are negligibly small and do not count in the perturbation
evolution. For strong shocks, the influence of the(almost
normal incidence) sound wave reverberations between the
piston and the shock becomes more important. This behavior
is a consequence of the fact that both the piston and the
shock front “speak” to each other for a longer time for stron-
ger shocks. For weaker shocks, this interaction can be ne-
glected. Therefore, there is the possibility to excite additional
modes at higher shock Mach numbers.

2. Additional modes of oscillation at the corrugated shock front

Let us consider for simplicity the lowest shift in the addi-
tional factors that composedPs, that is, terms of the form
1/fcoshsq+2usd−a1sq+2usdg. We are looking for poles of
this term which are purely imaginary complex numbers. We
will essentially follow the same technique as has been used
in the previous section and make use of Eq.(20). After some
straightforward algebra, and keeping in mind that we require
a.0 andb= ± ip /2, we get

b cosh 2us + Îb2 − 1 sinh 2us

= a10fb cosh 2us + Îb2 − 1 sinh 2usg

−
a11

fb cosh 2us + Îb2 − 1 sinh 2usg
, s26d

whereb=sea+e−ad. Let us set

gsbd = a10fb cosh 2us + Îb2 − 1 sinh 2usg

−
a11

fb cosh 2us + Îb2 − 1 sinh 2usg
. s27d

The minimum possible value ofb is b=1. Therefore, there
will be a solution ifgsb=1d is greater than or equal to the left
hand side of Eq.(27). that is, if the following inequality is
satisfied:

a11 ø a10 cosh2 2us − sinh 2us cosh 2us. s28d

This condition can be rewritten in terms of the DK parameter
h, and we gethc2,h where the parameterhc2 is given by

hc2 =
1 − bs

2s1 + r f /r1d + s1 − bs
2dfsinh2 2us + 2bs sinh 2us cosh 2usg

1 − bs
2s1 − r f /r1d + s1 − bs

2dsinh2 2us

. s29d

It can be seen that it is alwayshc,hc2. This means that the
condition for the existence of the poles ±is0 is also satisfied,
which implies that the additional pole coexists with the DK
mode. It is noted that a second pole would exist above a
certain minimum Mach number. The same type of calcula-
tion can be done for all the factors of the form 1/fcoshsq
+2nusd−a1sq+2nusdg and the conditions needed in order to

have as2ndth order pole can be sought. The modifications to
the previous equations are straightforward and we get

hc , hc2 , hc4 , ¯ , hc2n , h , 1 − 2bs
2. s30d

The quantityhc2n is indexed according to the “number of
shifts 2nus” in the variableq that gave rise to the correspond-
ing pole. Clearly, it ishc=hc0. For a given shock and EOS,
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the DK
parameterh could fall anywhere inside the subintervals de-
fined in the above equation. Whichever is the actual subinter-
val, the standard DK mode will always be present[admitting
that Eq.(23) holds]. The reason is that this mode is actually
independent of the boundary condition at the piston, as will
be discussed in Sec. V. Only the additional spectrum of
modes depends on the existence of a left boundary that re-
flects the sound waves emitted by the shock. The boundary is
only necessary to excite them att=0+, because of succesful
reflection of sound waves at the piston and their subsequent
interaction with the shock, as will be discussed in Sec. V.

Let us finish this paragraph by giving the expression for
the imaginary poles that form the rest of the spectrum of the
corrugated shock wave. To do it, we go back to Eq.(28), and
note that it can be easily transformed into a polynomic equa-
tion of second degree ine2a, as before. After some algebraic
manipulation, we can see that

T2 ; e2a2 = T0e
−4us

= Fa10 − 2a11 + Î1 + 4a11sa11 − a10d
1 − a10

Ge−4us, s31d

which can be easily generalized for the higher order poles as

T2n ; e2a2n = T0e
−2nus

= Fa10 − 2a11 + Î1 + 4a11sa11 − a10d
1 − a10

Ge−2nus. s32d

Accordingly, the only two second poles are given by ±is2,
wheres2 is

s2 =
1

2SÎT2 +
1

ÎT2
D , s33d

and the generals2ndth order poles are ±is2n, where

s2n =
1

2SÎT2n +
1

ÎT2n
D . s34d

In Sec. IV we will show situations in which at leasts0 ands2
are excited simultaneously for a real gas. Having calculated
the poles and given the conditions for their existence, there
remains the question of knowing how many additional eigen-
frequencies are possible. The condition thata.0 implies
that uT2nu.1. This means that the numbern in Eqs.(32) and
(34) is bounded from above. In other words the shock can be
excited, at most, with a finite number of eigenfrequencies.
The exact number depends on the EOS of the fluid. It can be
given by taking the logarithm of Eq.(32):

snumber of poles at the shockd ; n ø
ln T0

2us
. s35d

It is easy to see that the same analysis can be done for any
surface at which the self-similar variableu is constant(with
0øuøus). We will do it for the piston surface, which has
u=0, in the next subsection.

B. Poles of the pressure perturbation at the piston surface

We deduce here the functional equation satisfied by the
piston pressure perturbationsdPisqd. After some algebra, we
get [37]

dPisqd = x1sqd + x2sqddPisq + 2usd, s36d

where the functionsx1 andx2 are given by

x1sqd =
2a2sq + usd

coshsq + usd − a1sq + usd
coshsq + usd

coshq
,

x2sqd =
coshsq + usd + a1sq + usd
coshsq + usd − a1sq + usd

coshsq + 2usd
coshq

. s37d

We can get a particular solution, in the same way as was
done in Eq.(19). We just need to replacel by x. Regarding
the validity of retaining only the particular solution, it is easy
to see that this is licit to do only whenh,1−2bs

3. This last
inequality is satisfied assuming thath,1−2bs

2, because
bs,1. Concerning the poles ofdPi the situation is essen-
tially the same. Indeed, the poles are given by ±is2n+1, where

s2n+1 =
1

2SÎT2n+1 +
1

ÎT2n+1
D , s38d

whereT2n+1 is calculated with

T2n+1 ; e2a2n+1 = T0e
−2s2n+1dus. s39d

Obviously, the first pole at the piston appears at a high
enough Mach number, such that a condition analogous to Eq.
(27) is satisfied:

a11 , a10 cosh2 us − sinhus coshus, s40d

which can be, in turn, rewritten in terms of the DK param-
eter:

hc1 , h. s41d

In general, for high enough shock Mach numbers we could
define as2n+1dth order pole, such that the condition for its
existence ishcs2n+1d,h wherehcs2n+1d is given by
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hcs2n+1d =
1 − bs

2s1 + r f/r1d + s1 − bs
2dfsinh2s2n + 1dus + bs sinh 2s2n + 1dusg

1 − bs
2s1 − r f/r1d + s1 − bs

2dsinh2 2nus

. s42d

According to these results, the situation here does not seem
to be very different from the oscillations found at the shock.
To sum up the results of this section, in the general case, it
would be possible to obtain a nested set of subintervals of the
form

hc , hc1 , hc2 , ¯ , hcs2nd , hcs2n+1d , h , 1 − 2bs
2,

s43d

with n given by the upper bound of Eq.(35). The situation
indicated in Eq.(43) would correspond to the simultaneous
excitation of eigenmodes at the shock front and at the piston
surface. The pressure oscillations at the piston would be fur-
ther modulated by the natural frequencykcf of the sound
waves traveling in the resting fluid.

IV. SPONTANEOUS ACOUSTIC EMISSION AT A SHOCK
FRONT MOVING INTO A VAN DER WAALS FLUID

A. Zero-order flow magnitudes

The model developed in the previous section is valid for
any arbitrary EOS assuming that the fluid is inviscid. For an
ideal gas equation of state, the inequalities displayed in Eq.
(2) or Eq. (23) for the DK mode, or the more general in-
equality Eq. (43) would never be realized. This is a well
known result: a corrugated shock moving in a homogeneous
ideal gas is superstable[41,45] in the sense that any pertur-
bation imposed on its surface would attenuate and the shock
regains the planar shape. The situation is quantitatively dif-
ferent for a nonideal EOS. The simplest case to study is that
of a real gas with a van der Waals EOS[2,6,7]. We use it
here, as it provides us with a simple background flow on
which the results deduced before can be shown. As is already
known, the phenomena of acoustic emission are excited far
from the ideal gas zone. That is, near the gas-liquid transfor-
mation curve in theV-p plane, where the nonideal character-
istics of the gas are important. The dimensional equation of
state is given by[2,7]

Sp +
a

V2DsV − bd = NkBT, s44d

whereN is the number of molecules per unit mass,kB is the
Boltzmann’s constant, andT is the temperature. The param-
etersa and b are specific to the gas and roughly speaking
they take into account the finite volume of the molecules and
the interaction among them. The thermodynamic variables of
the critical pointsVcr ,pcr ,Tcrd can be written in terms of the
microscopic parametersa andb: Vcr=3b, pcr=a/ s27b2d, and
Tcr=8ma/ s27Rbd, wherem is the molecular mass andR is
the universal gas constant. We define the dimensionless vari-
ables: P=p/pcr, Q=T/Tcr, and Q=V/Vcr. The Hugoniot
curve is characterized by the initial state of the upstream gas

sP1,Q1d and its final statesP f ,Qfd. After some algebra, we
arrive at the equation for the Hugoniot curve:

P f ; P fsQf,Q1d =

s1

8 FSP1 +
3

Q1
2Ds3Q1 − 1d − 3

3Qf − 1

Qf
2 G

s1

8
s3Qf − 1d −

3

16
SQf

Q1
+ 1DQ1 +

3

8
Qf

+

9

8
S 1

Qf
− D +

3

8
−

3

16
SQf

Q1
+ 1D

s1

8
s3Qf − 1d −

3

16
SQf

Q1
+ 1DQ1 +

3

8
Qf

. s45d

The dimensionless DK parameter can be written in terms of
the derivative ofP with respect toQ along the Hugoniot
curve, in the final state:

h =
6bs

2

Qf
2 S1 +

1

s1
DS3 + P fQf

2

6Qf − 2
−

1

Qf
DSdP f

dQf
D−1

. s46d

An additional requirement is that when taking the gas from
its initial to its final state, the curve that joins both states be
inside the region defined by the conditions]2V/]p2ds.0
[44]. Otherwise, the front will not be compressive[2,3,6,44].

B. Temporal evolution of the perturbations: Series of Bessel
functions [Eq. (7)]

1. Pressure perturbations at the shock front

In this subsection, we use the results of Sec. II to get the
evolution of the pressure perturbations as a function of time.
The goal is to use the series of Bessel functions indicated in
Eq. (7). To collect the information necessary to deal with a
specific case, we must calculate the coefficientsp2n+1 with
the help of Eqs.(12)–(14). The initial state has a specific
volume Q1=3, which gives us a dimensionless pressureP1
=0.667, having assumed that the temperature is equal to the
critical temperaturesQ1=1d. In Fig. 3 we show the behavior
of the pressure perturbations for this case as a function of the
distance traveled by the shock from the piston. The final
compression volume isQf =1. The upstream Mach number is
M1<1.262 and the downstream Mach number isbs=0.726.
It is clearly seen that after a short transient, the perturbations
at the shock front oscillate with a definite amplitude and
frequency. There is qualitative agreement with the observa-
tions of Bates and Montgomery[7]. With the series expan-
sion used here, we can only measure the amplitude and fre-
quency of the oscillations directly from the graphic itself.
Nevertheless, in the next section we will do the same job by
making an inverse Laplace transformation of the results ob-
tained in Sec. III, calculate them analytically, and compare
them with the results obtained in this subsection. For the
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same gas parameters, we show the DK functionhc−h in Fig.
4, as a function of the upstream Mach number. We see that
this function is negative for some range of the final volume,
which means that the DK mode can be excited there. Indeed,
this is the case, as seen in Fig. 4. Regarding the other modes,
it can be seen that the quantityhc2−h is never negative for
this Hugoniot curve, and thus the second mode cannot be
excited. However, as has been discussed previously, we
could excite the additional modes at higher compressions. It
is clear that it would be convenient to start with an initial
state far from the liquefaction curve, in the ideal gas zone of
the fluid, and choose a final state, near the phase transforma-
tion curve, without ever crossing theG=0 line. The next
case we plot is a shock moving into a real gas withs1=80
and initial volumeQ1=35. The initial temperature is always
equal to the critical temperature. In Fig. 5, we plot the cor-
responding parametershc−h, hc1−h, andhc2−h to search for
the zones in the space of physical parameters in which there
is the possibility of exciting the DK mode, the second mode,
the piston mode, or all of them. As can be seen, the range of
final volumes, and hence of upstream shock Mach numbers,
in which the second mode is excited is smaller as compared
to the analogous interval for the DK mode. The shock Mach
numbers necessary to excite the second eigenmode are, in
fact, larger. According to these results, we should observe
both modes of shock oscillation together, for example at a
final compression volumeQf =1. In Fig. 6 we plot the pres-
sure perturbations at the shock front. The upstream Mach
number isM1<4.59 and the downstream Mach number is

bs<0.215. We see that there is a modulation of the pertur-
bations due to the action of, at least, two different eigen-
modes. If we calculate the upper bound of Eq.(35) for this
case, we getnø1.23, which means that the factors
1/fcoshsq+2jusd−a1sq+2jusdg, with j ù2, do not have
poles. Thus, only one additional mode, besides the DK
mode, is possible for this Hugoniot.

2. Pressure perturbations at the piston surface

As for the piston perturbation concerns, we have only
imposed that the normal velocity perturbations are zero. It
does not mean that every other quantity is zero, even asymp-
totically in time. That this is so is clear from the results of
Sec. III, in which we have seen that the Laplace transform of
the pressure fluctuations could show a number of poles when
evaluated at the piston. That is, there could be an asymptotic
oscillatory behavior for those perturbations. They are the re-
sult of the interference of all the waves emitted by the shock
downstream. For certain conditions, the piston becomes a
surface where those waves could interfere constructively and
the amplitude would neither grow nor decrease in time. To
confirm these facts, we can see in Fig. 5 the parameterhc1
−h as a function of the upstream Mach number. It is clear
that we will find pressure oscillations at the piston, at higher
compressions than are necessary for the standard DK mode
at the shock front. Correspondingly, a lesser compression is
required than that which is necessary to excite the second
shock eigenmode. In Fig. 7 we show the temporal evolution,

FIG. 3. Dimensionless pressure perturbations at the shock front
as a function of the distance traveled by the shock in units ofl. The
gas parameters ares1=30, Q1=3, andQf =1.

FIG. 4. Parameterhc−hD as a function of the upstream Mach
number.

FIG. 5. Parametershc−hD, hc1−hD, andhc2−hD as functions of
the upstream Mach number.

FIG. 6. Dimensionless pressure perturbation at the shock front.
The gas parameters ares1=80, Q1=35, andQf =1.
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calculated with the series expansion given by Eq.(7), for a
shock moving into a real gas with a dimensionless specific
heats1=80, Q1=35, and final volumeQf =1. The modula-
tion seen on the signal is due to the interference of the char-
acteristic oscillation at the piston with the transverse sound
waves that travel in the resting fluid with frequencykcf [10].

C. Residues at the poles

1. Single DK mode at the shock front

We want to compare the previous results with the analyti-
cal information that can be derived from the Laplace trans-
forms calculated in Secs. III and IV. As we know from the
theory of the Laplace transform[40,46], the shock pressure
perturbations in the real time domain can be calculated with
the following integral in the complex plane:

dp̂ssrd =
1

2pi
E

z−i`

z+i`

dPsssdesrds, s47d

wherez is a real number chosen in such a way that all the
singularities of the integrand lie to the left of the line Res
=z. As dPs is a Laplace transform, it vanishes for large val-
ues of its argument. Then, if we close the path of integration
with a large semicircle to the left, the integrand approaches
zero at least as fast asesResdr with Res,0 and the residue
theorem can be used to calculate the integral in Eq.(47) [46].
That is, we choose a suitable contourG which closes the
vertical path of Eq.(47) to the left, and formally write the
equation[46]

1

2pi
R

G

dPsssdesrds=E sresidues at the polesd

+ R saround essential singularitiesd.

s48d

Instead of dealing with the variables it has proved more
useful to work with the variablew, as suggested by Miller
and Ahrens, which is defined by[5]

s=
1

2
Sw −

1

w
D . s49d

The variablew is essentially the same as the variabley used
by Fraley[10]. We must also choose a closed path that en-
circles all the singularities of the integrand in thew plane.
We consider first the simplest situation studied in the previ-
ous subsection. Let us consider a corrugated shock moving
into an undisturbed van der Waals gas with dimensionless
heat capacity given bys1=30, initial volume Q1=3, and
final volumeQf =1. We want to reproduce the results of Fig.
3 with the theoretical tools given by the preceding equations.

The contour integral can be rewritten in thew plane as

1

2pi
R

G

dPsssdesrds=
1

2pi
R

G8
dPsswdSw2 + 1

2w
Desr/2dsw−1/wddw

w
.

s50d

The circuit G8 is the corresponding contour in thew plane.
For the case studied in Fig. 3, the Laplace transform has two
poles ats= ± is0, which correspond to two poles ±iw0 in the
w plane. There is also an essential singularity at the origin in
the w plane, due to the exponential term. The integration
path reduces to two small circles of arbitrarily small radius
that enclose the poles ±iw0, and a circle of radius unity that
surrounds the origin clockwise, due to the essential singular-
ity there. Thus, after some manipulation, the functiondp̂ssrd
can be calculated:

dp̂ssrd = dp̂s0srd +
1

2pi
R
C

dPsswdSw2 + 1

2w
Desr/2dsw−1/wddw

w
,

s51d

whereC is a circular path enclosing the origin clockwise, and
dp̂0srd is the contribution due to the simple poles ±iw0. To
calculatedp̂s0 we must manage the terms that contain the
factor coshq−a1sqd. It is useful to factorize it in terms of the
variablew in the form

coshq − a1sqd ;
s1 − a10d

2wsw2 − 1d
sw − iw0dsw + iw0d

3sw − iz0dsw + iz0d, s52d

where z0=ÎU0e
−2us, with U0=f−Î1+4a11sa11−a10d+a10

−2a11g / s1−a10d. We write the final result for the pole con-
tribution, after some long algebra, as

dp̂s0srd = a0 sins0r , s53d

which gives a sinusoidal contribution as expected, since
dp̂ssr =0+d=0. The quantitya0 is given in the Appendix. The
next step is to calculate the integral along the unit circle. By
simple inspection in the expression ofdPs in Eq. (19), it is
clear that retaining a large number of terms in the calculation
would be a difficult and not necessary task. This is due to the
fact that the Mach number in this case is near unity, and with
just the first terml1 is accurate enough. Actually, asus is
larger than unity, we could even approximatel1 by the term
a2sqd / fcoshq−a1sqdg with negligible error in the final re-

FIG. 7. Dimensionless pressure perturbation at the piston sur-
face sx=0d, for the same gas parameters as in Fig. 6.
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sults. This is what we do next, and later on compare with the
exact result given by the series of Bessel functions. Making
the substitutionw=eif and after using symmetry properties
of the trigonometric functions involved, the integral around
the contourC is reduced to

1

2pi
R

C
dPsswdSw2 + 1

2w
Desr/2dsw−1/wddw

w

=
1

2ps1 − a10d
E

−p

p 2 cosfs1 − w0
2z0

2dssin 2f + w0
2 + z0

2d
s1 + 2w0

2 2f + w0
4ds1 + 2z0

2 cos 2f + z0
4d

3sinsr sinfddf. s54d

In Fig. 8, we compare the solution given by the series of
Bessel functions used in the last subsection and the results
predicted by Eqs.(53) and(54). We see that the agreement is
very good, except during the transient stage when the shock
is still near the piston surface. As the effect of the sound
wave reverberation is important when the shock is still near
the piston, we would need at least the complete expression
for l1 to take into account these early time reflections. Any-
way, due to the small value(near unity) of the Mach number,
the difference from the exact solution is quite small, after the
shock separates from the wall some wavelengths. The nu-
merical values of the complex poles predicted by our equa-
tions arew0<1.073 ands0<1.0025. To calculate the tempo-
ral frequency associated with the poles ±is0 we must go from
ther variable back to thet variable. This amounts to dividing
by coshus<1.454. We thus obtain the temporal frequency of
the oscillations in units ofkcf: v0=s0/coshus<0.689kcf. We
multiply it by the factor 2p /bs to get the spatial frequency
2pv0/bs<5.965. This gives us a spatial period(the horizon-
tal axis is the shock-piston distance divided by the perturba-
tion wavelength) equal to bs/v0<1.053, which coincides
very well with the result shown there.

2. First and second modes at the shock front

We increase now the Mach number and the specific heat
to compare with the results presented in Fig. 8. We consider
a real gas withs1=80, Q1=30, andQf =1. We have now a
second pair of complex conjugated imaginary poles ±is2, as
given by Eq.(33). These poles in thes plane correspond to
an equivalent set of two complex conjugate poles ±iw2 in the

w plane. We havew2=ÎT2=ÎT0e
−2us, with T2 given by Eq.

(34). Analogously to the situation found for the first DK
eigenmode, the absolute value of the previous pole is larger
than unity. In addition, there are two additional zeros of the
factor coshsq+2usd−a1sq+2usd, which have absolute values
less than unity and which we call ±iz2. They correspond to a
negativea value, which is related to the negative determina-
tion of the square root in terms likeÎs2+1, and are therefore
excluded as poles of our Laplace function. The main differ-
ence from the last section is that we have now two additional
terms in the residue calculation. The residues associated with
the poles ±is0 are calculated in the same way as before. To
deal with the second poles, it is more convenient to define a
new auxiliary function that factors out the denominator
1/fcoshsq+2usd−a1sq+2usdg. After some considerable alge-
bra, we get

dp̂s2srd = a2 sins2r , s55d

where the quantitya2 is given in the Appendix. The total
shock front pressure perturbation will be given by a sum of
the form

dp̂ssrd ; dp̂s0srd + dp̂s2srd +
1

2pi
R

C
dPsswd

3Sw2 + 1

2w
Desr/2dsw−1/wddw

w
, s56d

where the integral in the right hand side is the contribution of
the essential singularity at the origin and gives rise to decay-
ing oscillations superposed on the permanent, stable oscilla-
tions given by the simple poles ±is0 and ±is2.

We show the final result in Fig. 9. It is noted that only the
asymptotic contribution given by the oscillatory terms has
been included. We see that it introduces only a small differ-
ence during the transient stage, when shock and piston are
quite closesxs,ld. The numerical values for this case are
w0=1.714,s0=1.149,w2=1.108, ands2=1.005. We clearly
see the modulation due to the simultaneous excitation of both
frequencies. A natural question is to ask whether it is pos-
sible to have an excitation in which the amplitude of the
standard DK mode could be smaller compared to the ampli-

FIG. 8. Comparison of the exact(dash-dotted curve) and the
asymptotic solution(solid curve) for the oscillations shown at the
shock surface in Fig. 3.

FIG. 9. Comparison of the exact(small empty circles) and the
asymptotic solution(solid curve) for the oscillations shown at the
shock surface in Fig. 7.
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tude of the second mode. At least for the zone of the space of
parameters explored here, it does not seem feasible.

D. Pressure oscillations at the piston

As has been shown in Eqs.(36) and(37), the piston pres-
sure Laplace transform also satisfies a functional equation,
from which an exact particular solution can be found. The
imaginary poles of that solution would correspond to stable
oscillation modes at the piston surface. It is not difficult to
understand that the poles are given by the zeros of terms of
the form coshfq+s2n+1dusg−a1fq+s2n+1dusg. To show a
specific case, we study the same real gas as in the previous
section(Fig. 9) and the final volume is nowQf =1, such that
the first eigenmode at the piston is excited. The poles are at
±is1, with s1=1/2sw1+1/w1d wherew1=ÎT0e

−us. The calcu-
lations of the residue at the previous pole are entirely similar
to the algebraic steps done for the first DK eigenmode at the
shock. The functiondp̂i0std is given by

dp̂i0std = a1 sins1t, s57d

where the quantitya1 is also given in the Appendix. In Fig.
10 we show the results given by the series of Bessel func-
tions and compare them with the functiondp̂i0std for the
same situation studied in Fig. 7. We see that the perturbation
is modulated by another signal that oscillates at the fre-
quencykcf. This is the natural frequency of the transverse
sound waves that exist near the piston and travel almost par-
allel to it, as discussed by Fraley[10]. This modulation will
later decrease in amplitude, and the asymptotic perturbation
will be the stable oscillation given by the contributiondp̂i0
above. As the shock is rather strong in this case, the effect of
the transverse sound waves is not negligible. This contribu-
tion comes from the integral along the unit circle in the com-
plex w plane and takes longer to attenuate. For this case, we
have w1=1.378 ands1=1.052. The spatial period(when
measuring the perturbations as a function ofxs/l) is bs/s0
<0.214. On the other hand, the period of oscillation of the
modulating envelope would be approximately given by
bs/ ss1−1d<4.146 which coincides quite well with the value
directly measured in Fig. 12 below. Thus, it would take at
least two or perhaps more of such time intervals in order for
the modulation produced by the transverse waves to decay

considerably and leave space to the dominant piston eigen-
mode. It is interesting to make here a brief digression about
the mathematical origin of the modulation seen in Fig. 7 or
10. Its nature is quite different from the modulation seen on
the shock perturbations in Fig. 6 or 9. In the case of the
shock perturbations, we have the excitation of two simulta-
neous eigenfrequencies which correspond to the termsdp0
~ sins0r and dp2~ sins2r in Eq. (56). In the piston case,
studied in Figs. 9 and 12, we have only one eigenfrequency,
given by the conjugated poles ±iw1, or equivalently ±is1. If
we look more closely at the expression ofx1sqd, we would
see that there is a term coshq;Îs2+1 in the denominator,
which is not present in the expression fordPssqd, in Eq.(19).
We could always formally calculate the inverse Laplace
transform of the new functiondYsqd=coshqdPisqd from Eq.
(36). It is clear that this new functiondY would give rise to
the same poles asdPi but different residues. In fact, after
some tedious algebra, it can be seen that the inverse Laplace
transform ofdY is proportional to a function of the form
coss1t, which is different from the sine behavior associated
with the poles ofdPs and dPi. But we are interested in the
inverse ofdYsqd /coshq;dYssd /Îs2+1. It is then immediate
that part of the asymptotic response ofdp̂i would be given by
a convolution of coss1t with J0std, whereJ0 is the ordinary
Bessel function of zero order[40,46]. This explains the
modulation at the piston.

V. DISCUSSION

A. Comparison with previous works

It will be interesting to review former works that have
also used the Laplace transform technique. We want to un-
derstand where the previous works separate from our conclu-
sions and where they agree. The Laplace transform approach
has been used initially by Roberts[20] to study the propaga-
tion of an isolated shock into an ideal gas. Recently, the same
approach has been followed and mistakes in the original
work of Roberts have been corrected[47]. In it, the author
tries to study the instability problem for a shock moving into
a fluid with arbitrary equation of state. The idea used is the
same as the one used here, to look for the poles of the
Laplace transform and search for the conditions under which
unstable behavior could be observed. Zaidel’ also used the
Laplace transform to solve the perturbation problem ahead of
a corrugated piston, and has been the first to propose, to our
knowledge, the Lorentz transformation that leads to Eq.(6).
Later on, the same approach was used to study the reflection
of a planar shock from a corrugated wall and compare the
theoretical predictions with experimental results[35]. Much
later, in the context of the Richtmyer-Meshkov instability,
Fraley (after Zaidel’) has provided the scientific community
with a rigorous, complete, and exact analytical solution for
the perturbation field evolving between two shocks separated
by a corrugated contact surface, in ideal gases. His approach,
however, dealing with the same physics as here, managed the
fluid equations in the physical space of thex, t variables,
making a Laplace transformation in time, instead of working
with Zaidel’s coordinatesr, u. We will later see that his ap-

FIG. 10. Comparison of the exact(dashed curve) and the
asymptotic solution(solid curve) for the oscillations shown at the
piston surface in Fig. 9.
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proach and ours are entirely equivalent, and therefore, our
conclusions could also be obtained following his calcula-
tions. Unfortunately, he restricted his analysis only to ideal
gases, and did not show any quantitative result regarding a
stability criterion like Eq.(2) or Eq. (30). Some years later,
Miller and Ahrens[5] applied and improved Zaidel’s work
with a more or less similar formalism as the one used in this
work, to address the effect of viscosity on the shock pertur-
bation evolution. It is also interesting to briefly review this
work, as the authors have considered a perturbed shock mov-
ing into an inviscid fluid too. Nevertheless, they used an
approximate boundary condition at the piston surface,
namely, that the eigenmodes should vanish there, on the as-
sumption that for large times, shock and piston would be
separated far enough and any causal influence between them
could be safely neglected. It is interesting to notice that in so
doing, they do not get a functional equation for their Laplace
transform and therefore they can only predict the standard
DK mode. On the contrary, the work done by Fraley does
include consistent boundary conditions at both the piston and
the shock front and obtains a functional equation completely
equivalent to our Eq.(15). We start by discussing very
briefly the derivations of Miller and Ahrens for their inviscid
case. After that, we continue with Fraley’s work.

1. Isolated shock (Miller and Ahrens’ work, Ref. [5])

According to Ref.[5], we could take the Laplace trans-
form of the fluid equations and write them in the following
compact form:

]uW

]x
= AuW , s58d

whereu is a three-component vector defined essentially by
uW =sdu,dv ,dPd, with du the Laplace transform of the per-
turbed normal velocity,dv that of the tangential direction,
and dP that of the pressure perturbations. Their dimension-
less quantities are defined with different scaling factors, so
our comparison remains qualitative. In addition, they use a
coordinate frame moving with the shock. The tensorA is 3
33 matrix whose components can be found in Ref.[5]. Our
aim is only to make a simple discussion that points out the
differences in their results as compared with ours, and try to
understand the reasons for that difference. They propose a
general solution of the formuW =uWx=0e

lx, where it is remem-
bered thatx=0 is the shock position in their frame of refer-
ence. The quantityl is a possible eigenvalue for the differ-
ential equations system of Eq.(58). After inserting the
previous ansatz in the equations, the three eigenvalues
sl1,l2,l3d, and their associated eigenvectors can be ob-
tained. The matrixA can then be factorized as

A = S−1LS, s59d

whereS is a matrix formed by the eigenvectors andL is the
diagonal matrix formed with the eigenvalues. The original
Eq. (58) can then be recast as

]uW

]x
= S−1LSuW . s60d

The last equation can be formally solved, to obtain

uW = S−1eLfsSuWdx=0g. s61d

The previous equation gives us the three perturbation quan-
tities in terms of the three eigenvalues of the problem and the
boundary conditions at the shock. However, since their third
eigenvalue is positive, the exponentialel3x will diverge in the
limit x→`. To circumvent this apparent difficulty, the au-
thors assume that the corresponding eigenvector should van-
ish, in order to keep a bounded solution in the whole space
behind the shock(x.0 means behind the shock in their no-
tation). This approximate boundary condition is somewhat
equivalent to “forgeting” the piston in the compressed fluid
and not considering any reflecting surface at all. After adopt-
ing this approximation, they managed to obtain a mathemati-
cal solution for the shock front ripple. In analyzing the poles
of that solution, they obtain the DK criterion for the emission
of undamped sound waves[their Eq. (27)]. That is, when
forcing the piston behind the shock to completely decouple
from the shock, we are erasing from the problem the sound
wave reverberations that take place between the shock and
the piston aftert=0+. In other words, we are excluding from
the problem, from the very beginning, the ingredient that
excites the rest of the spectrum. Only the DK mode will be
retained, because it actually does not need any sound wave
coming from behind.

2. Shock interacting with a contact surface
(Fraley’s work, Ref. [10])

In connection with the work of Miller and Ahrens, we
discuss now the work of Fraley, which makes essentially the
same mathematical treatment: he takes the temporal Laplace
transform of the equations of motion and integrates them in
space. He obtains the sound pressure modes(essentially, the
modes associated with the same eigenvaluesl2 and l3 of
Miller and Ahrens) and stationary vortex and entropy modes
[10]. The main difference between these two works, besides
notation, is that Fraley did not exclude the piston from the
mathematical formulation. He used the correct boundary
condition regarding the normal velocity component there and
the continuity of pressure(in case there were another fluid to
the left of the piston surface, as in the standard Richtmyer-
Meshkov problem). In so doing, he had to keep account of
the Doppler shift at the shock fronts, because at some point
in the calculations we must couple the shock oscillations
with the fluctuations that arise in the resting fluid near the
piston. This mathematical complication(apparent in the
value of the eigenvaluesl2 and l3 of Ref. [5]) would be
always present, and it is responsible for complicating the
mathematical structure of the equations in such a way that
the Laplace transform would be the solution of a functional
equation. If the physics included in Fraley’s work is the same
as ours, then we should also reobtain our Eq.(15) with Fra-
ley’s equations. This is our next task in the following lines.
To keep the notation as simple as possible, we try to follow
Fraley’s nomenclature, except when it is no longer possible
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to do so. Let us begin with the mathematical structure of the
modes found in Ref.[10]. The pressure modes are written
as [10]

dpss,xd = assdexpsxÎs2 + 1d + bssdexps− xÎs2 + 1d,

s62d

from which the corresponding perturbations in normalsdud
and tangentialsdvd velocities can be derived. There is a third
mode that accounts for the generation of vorticity and an-
other for the generation of entropy at the corrugated shock.
As discussed by Fraley, the first modefassdexpsxÎs2+1dg
consists of waves escaping from the shock into the com-
pressed fluid. The other modefbssdexps−xÎs2+1dg stands for
the sound waves that hit the shock from behind. Further-
more, to deal with the moving shock front, the transform of
the pressure at the shock must be rewritten by using a com-
mon Laplace variable which Fraley callsr, but which we
prefer to call r̂ in order not to confuse it with our Lorentz
coordinate in Eq.(6). To understand the origin of the com-
mon variabler̂, it is better to write the inverse Laplace trans-
form of one of the modes at the shock[10]:

E
z−i`

z+i`

ds2ass2dexpss2t + bstÎs2 + 1d

=E
z−i`

z+i`

dr̂ ass2d
ds2

dr̂
expsr̂td, s63d

and analogously with the other modebss1d. We see that the
frequencies of oscillation of the modesassd and bssd at the
shock front are Doppler shifted. We also recognize the factor
Îs2+1, which enters naturally into the problem. Its origin
resides in the transverse partial derivative]2p/]y2 in the
wave equation[Eq. (6)]. That is, the termÎs2+1 and the
branch points associated with it(at s= ± i) are the mathemati-
cal manifestation of the existence of a lateral flow along the
transverse directiony.

The Laplace variabless2, s1, and r̂ are connected by

r̂ = s2 + bs
Îs2

2 + 1,

r̂ = s1 − bs
Îs1

2 + 1. s64d

Let us defines=sinhq, s2=sinhq2, ands1=sinhq1. It is
easy to obtain, after some algebra,

r̂ =
sinhsq1 − usd

coshus
=

sinhsq2 + usd
coshus

. s65d

That is,q1=q2+2us. Therefore, the Laplace transform of the
pressure perturbations at the shock, according to his notation,
is

dPssr̂d ; asq − usdcoshsq − usd
coshus

coshq
+ bsq + usd

3coshsq + usd
coshus

coshq

;
f1sq − usd + f2sq + usd

coshq
. s66d

which coincides with our solution, later shown in Eq.(70).
To show the complete equivalence between Fraley’s calcula-
tions and ours, we have to go to the boundary conditions at
the shock front[37] [namely, his Eqs.(14) and (15)] and
reobtain our Eq.(15). When manipulating his shock bound-
ary conditions, in the same way as Richtmyer did, to get a
differential boundary condition for the pressure fluctuations,
we arrive at

fr̂2 − sbs + E1dcoshsq − usdr̂ − E2Acgfsq − usd

+ fr̂2 − sbs + E1dcoshsq + usdr̂ − E2Acgfsq + usd

= E2c0
coshuq

coshus
. s67d

To get the last equation, we have made use of the only ac-
ceptable boundary condition at the rigid piston, namely,f2
= f1= f, because the normal acceleration is zero at the wall.
After some additional lengthy algebra, which we prefer not
to show, it is straightforward to see that the previous equa-
tion is the same functional equation as Eq.(15), when rewrit-
ten in terms of our functionF=F1=F2. Some immediate
conclusions can be drawn from this result. It is clear that
with either Fraley’s approach or the model presented here,
we would get the same spectrum for the perturbed shock and
the fluctuations that evolve in the downstream fluid. That is,
we would reobtain the same oscillation patterns at the shock
and at the piston. He continued his analysis further and dis-
cussed the question of stability of the shock traveling in ideal
gases in the context of the Richtmyer-Meshkov instability
and obtained well known results[47,48]: temporal decay like
t −3/2, etc. We will not review those issues here. We want to
emphasize the fact that, when considering a reflecting sur-
face behind the shock, a term that describes the reflected
waves must be included and a functional equation for the
Laplace transform of the pressure appears naturally. As can
be deduced from Eqs.(62)–(67) the nature of the functional
equation is the Doppler shift at the shock front and the exis-
tence of a reflecting surface behind it. Furthermore, if we
want to close the problem and solve it exactly, we need an
additional condition on eitherf1, or f2, or both functions.
That is, we should say something about either the left facing,
the right facing, or both types of waves. In the case of a rigid
piston, we ask for the vanishing of the normal acceleration
there. On the contrary, if the piston were a free surface, a
situation in which the pressure perturbations would be zero
there all the time(but not the normal velocity perturbations;
this is the symmetrical Riemann problem discussed by Ve-
likovich [41]), we would require:f1=−f2= f [9,36,37,41]. On
the other hand, if the shock were traveling isolated, without
interacting with a wall from behind, a case also discussed by
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Fraley [10] and used as a paradigm by many others
[1,5–7,20–24,26–33,47,48], we should make the second Fra-
ley modebss2d=0, which is consistent with makingF2;0 in
our notation. This boundary condition behind the shock
erases completely the right facing waves that hit the shock
from behind. As will be clear from the discussion in the next
section, with this assumption, no additional modes other than
the DK mode would be excited. Going back to the Miller and
Ahrens work, it is clear that they would also have been able
to get the complete spectrum if they had retained the reflect-
ing surface behind the shock, in much the same way as Fra-
ley did to deal with the shock and piston boundary condi-
tions. As they were interested in other phenomena inside the
viscous fluid into which the shock was propagating, they
considered a good starting point to neglect the piston bound-
ary, in order to simplify the discussion at the shock.

Before concluding this paragraph, we reconsider the nor-
mal mode approach used to derive the classical DK criterion.
As we know, to solve a partial differential equation by sepa-
ration of variables, some conditions must hold not only for
the equation itself but also for the boundaries. The wave
equation is known to be separable, and this justifies at least
the ansatz done in Eq.(4). But the boundaries should be
rectangular in the system of coordinates chosen[49–51].
That is, the boundary conditions should be known at fixed
values of the coordinates, in order to define Sturm-Liouville
problems in at least one of them, and get orthonormal sets of
functions. After a linear superposition, the solution to the
problem can be found by application of the boundary and
initial conditions[49–51]. But, for the method to work prop-
erly, the boundaries in thex or y directions should be kept
constant in time(either a constant real number, or just taken
at infinity). In the case of the shock problem discussed here,
in the reference frame used, the shock surface is moving:
xsstd=ust. This fact precludes the use of separation of vari-
ables to solve the problem in Cartesian coordinates, if we
want to consider the piston and the shock together. To avoid
this complication, we have used a Lorentz transformation
[see, for example, Eq.(6)]. In the new system of coordinates,
the domain of integration is the union of “squarelike” inter-
vals of the form 0ø r ,` and 0øuøus. In this way, we
arrived at well known equations: the Bessel equation for the
r variable, with a complete system of solutions, and the
spring equation in the variableu, for which exponential so-
lutions can be derived. After superposing both sets of func-
tions, we calculated the coefficients of the expansion by ap-
plying the boundary and initial conditions both at the piston
and at the shock. The solution is presented in the form of a
series like Eq.(7). It is clear that nonlocality in space and
time is a characteristic of the solution that is unfortunately
necessary to explain the subtleties of the perturbation field
between both surfaces[see, for example, the works of Rob-
erts [20] or Bates[47] to see the causal influence between
shock and piston, propagated along characteristic rays in the
x,t space]. The solution indicated in Eq.(7) has all the phys-
ics, once the coefficientsDn are calculated. What happens
then, with a perturbation of the form suggested by Eq.(4)?
We know that by assuming this type of solution in the
Rankine-Hugoniot conditions, the stability condition for
spontaneous acoustic emission[Eq. (2)] is correctly obtained

[1,6,7]. However, the more general criterion for the possible
excitation of the complete(finite) spectrum is lost. We could
reconcile these two results thanks to the conclusions of the
model developed here. In fact, let us consider, for example
the derivation of the dispersion relation as done in Ref.[26].
In it, the origin of coordinates is taken at the shock itself.
Then, the piston moves to the left with a finite velocity and
spoils the use of the separation of variables. However, we
could formally suggest a separated solution like Eq.(4) if the
piston boundary were at infinity. In fact, “Since it takes a
finite time for the perturbation to interact with the medium at
a large distance from the shock, we impose the physical con-
straint on the perturbation quantities that they die out at suf-
ficiently large distances. Mathematically, this is equivalent to
a requirement on theseparation of variables solutionthat it
be bounded asx8→`”, as extracted from Ref.[26]. Assum-
ing the piston very far away is equivalent to excluding from
the problem the physics that occurs between shock and pis-
ton from t=0+ onward, with the illusion that we would pick
out the essential properties of the asymptotic behavior, just
because we are studying the system in the limitt→`. This
would be the correct form of dealing with the asymptotic
evolution if the system were capable of “forgetting” some-
how the initial conditions quite soon, that is, if the problem
were self-similar[2], which is certainly not the case here. It
is also not true in more complex situations like the
Richtmyer-Meshkov problem, in which the early time inter-
action between shock and contact surface decides the value
of the instability rate of growth at later times[9,10,37]. As
has been shown in previous sections, the acoustic emission
modes exist together with the decaying perturbations from
t=0+. Therefore, letting the piston surface go very far to the
left and making the perturbations there equal to zero is the
same as erasing the right facing waves reflected by the piston
and considering an isolated shock moving to the right. In this
approximation, the solution will display only the standard
DK mode, but not the rest of the possible frequencies. We
note that settingxpiston8 →` is the only way to justify the use
of a separable solution. In conclusion, the usual approach
developed by previous authors when studying the shock sta-
bility problem only gives a correct answer for an isolated
shock front which does not interact with a reflecting bound-
ary behind it. The more general problem of a shock with a
reflecting piston surface shows a wider spectrum, which de-
pends on the EOS of the fluid.

We should note that we could also find zones in which the
shock exhibited another type of growth, maybe exponential.
However, if we use the solution provided by Eq.(19), we
must note that only the zones withh,1−2bs

2 are allowed to
be explored. Therefore, we could study zones in whichh,
−1, in order to search for exponentially growing perturba-
tions [1,26]. Of course, the zones withh.1+2bs could also
be explored with the same tools as here, but we need to
include the solution to the homogeneous equation of Eq.
(15), which has not been obtained yet for the 2D problem.
Furthermore, as our analysis includes the piston, it is quite
possible that an even wider spectrum than that predicted by
Eqs.(68) and(69) could be found. This task is left for future
work.
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B. Classical DK dispersion relation

The approach followed in former works, since that of
D’yakov and Kontorovich, has been the use of a(normal
mode) separable solution for the perturbed quantities in the
space behind the shock[1,5–7,21–33]. In doing so, the pos-
sibility of additional longitudinal wave numbers(along thex̂
direction) must be taken into account. As we have seen in the
last sections, the exact solution to the perturbed quantities
cannot be written with separatedx andt variables. The main
reason is that we have to deal with the two types of sound
waves: right and left facing. Even though we know that the
DK mode is correctly predicted even when the approximate
ansatz provided by a solution of the form expsikx+ ikyy
+vtd is used for the perturbation quantities. Another known
approach to the shock stability problem has been to study the
reflection of sound waves impinging on the shock front from
behind[1,21–23]. In this way, the coefficient of reflection of
the sound waves at the shock surface can be calculated from
the linearized Rankine-Hugoniot equations. The conditions
for spontaneous acoustic emission are obtained by requiring
that the reflection coefficient becomes infinite. This require-
ment expresses the fact that the shock reflects sound waves
in the absence of waves incident on it[22,23]. This has been
another approach to obtaining Eq.(2). We have also obtained
it here with a different formalism, by looking at the poles of
the complete Laplace transform. The interesting task is un-
derstanding how to reconcile these approaches. Letv be the
oscillation frequency of the excited mode in the shock mov-
ing frame of reference. The fluid velocity that escapes down-
stream from the shock isu in the shock front system. There-
fore, the frequencies measured at the shock and at the piston
will not be the same due to the Doppler shift[1]. Let v0 be
the frequency of the oscillations as measured in a system
fixed to the piston surface. Then both frequencies are con-
nected by[1,26]

S v0

kycf
D2

= S v

kycf
−

kx

ky
bsD2

= 1 +
kx

2

ky
2 . s68d

In addition, we definek̂=kx/ky and V=v / skycfd. The usual
procedure is to introduce Eq.(4) into the linearized Rankine-
Hugoniot conditions and obtain the dispersion relationship in
the form [7,26]

Dsk̂,Vd = 2V
r1

r f
S1 +

V2

bs
2D − S1 +

r1

r f

V2

bs
2DsV − bsk̂ds1 + hd

= 0, s69d

and solve the last two equations together. It can be easily
verified numerically that the first pole found in this work
[Eq. (25)], which corresponds to the first acoustic emission
mode, is a solution to the above dispersion relationship.
However, the additional poles do not satisfy it. The reason is
very simple and has to do with the kinematics of the inter-
action between the shock and the piston. As will be shown
later on, the sound wave emitted at the DK frequency, is
reflected at the piston surface with such an angle that it can-
not get back to the shock. That is, the projection of its ve-
locity along the normal to the shock is less than the shock

speed. This result will be rigorously deduced in the next
section when discussing the full spectrum. In consequence,
as far as the dynamics of the standard DK mode is con-
cerned, it is as if the piston did not exist. Once emitted by the
shock, that mode will never interact with the shock after
reflection at the piston boundary. Hence, it is easy to under-
stand why the standard DK dispersion relation for the modes
of an isolated shock agrees with our first pole at the shock
found in this work. As will be shown later on, when the
second mode is excited at the shock surface, the first mode is
emitted at such an angle that it will definitely hit the shock
from behind. In this way, the second mode appears because
the first(standard DK mode) starts to interact with the shock,
after reflection at the piston.

Let us briefly see how can we get the isolated shock
acoustic mode within the framework of our model. The
shock front pressure perturbations can always be rewritten as
[34,37]

dPssqd =
F1sq − usd + F2sq + usd

coshq
, s70d

where, as can be seen from Ref.[10] and the review pre-
sented in the last subsection, the functionF1sq−usd stands
for the sound waves that leave the shock surface into the
compressed fluid. The second termF2sq+usd represents the
waves that hit the shock from behind[10]. Therefore, in the
absence of a true piston that can reflect sound waves, as in
the example discussed by Bates and Montgomery[7], we
must require thatF2=0 in the downstream fluid. From the
boundary conditions at the shock and using the results of
Ref. [37], u=us, we get a simple analytical solution

dPssqd =
a2sqd

coshq − a1
. s71d

It is clear that with this boundary condition(no piston behind
the shock), the solution is simpler than the one shown in Eq.
(19). We also see that the Laplace transform given by Eq.
(71) shows only one pole, if the conditions given by Eq.(2)
are satisfied. That is, for an isolated shock, which is slightly
perturbed in shape because of some infinitesimal shock tube
width constriction, as in Bates and Montgomery[7], only the
DK mode would be excited. Because there is no piston to
reflect the sound waves in the space behind, the function
F2=0, and we lose the rest of the spectrum. That is, the
sound waves that reverberate between shock and piston are
necessary to excite the additional eigenmodes. Because the
shock shape is corrugated, the shock will always start to
oscillate at its highest natural eigenfrequency, as given by the
DK prediction, when Eq.(2) is satisfied. However, in order
to excite the other frequencies, we need the termF2sq−usd.
Otherwise, we would not be able to construct the functional
equation[Eq. (15)], or its solution given by Eq.(19), and get
the other eigenmodes. In other words,F2sq−usd is the term
that keeps account of the waves that face toward the shock
and it is a necessary ingredient to put the right facing sound
waves in our system. This means that those waves should
have been generated somewhere behind, at the piston sur-
face. It is in this sense that we say that the left reflecting
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boundary is necessary to excite the entire spectrum. In addi-
tion, the eigenmodes[represented by functions likedp̂0srd
for the DK mode, ordp̂2srd for the second excited mode]
exist fromt=0+. They are generated together with the rest of
the perturbations once the corrugated shock has been formed,
so it could be misleading to think of them as only an
asymptotic response of the shock front. After the shock has
traveled some wavelengths away, they will be the only re-
maining perturbations, because the contribution from the
transverse and normal incidence sound waves[represented
by the unit circle integral in Eq.(54), for example] would
decay. Therefore, the spectrum, if the necessary conditions
for its existence is satisfied, is fully excited fromt=0+. The
first eigenmode exists without the need of having any sound
wave coming from behind, because we got it even ifF2=0.
On the contrary, the second eigenmode exists becauseF2
Þ0, thanks to the reflecting surface downstream[5,25,32].
We recall here that the possibility of including a reflecting
surface behind the shock has been taken into account for the
1D problem, by Fowles and Swan in Ref.[25]. In it, the
authors considered 1D perturbations in pressure that traveled
along the characteristics, were reflected at the shock, and
traveled back to the piston, to continue the reverberation pro-
cess. It was shown, that depending on the EOS of the fluid,
the shock front perturbations could either decrease, remain
stable, or grow in time[25]. To sum up, we see that the
excitation of these additional frequencies is a consequence of
the reverberation of the sound waves that bounce between
the shock and piston. This process starts very early in time,
when shock and piston are very near each other(at t=0+) and
lots of reflections between piston and shock are taking place
[12,41]. As discussed by Richtmyer[12], the effect of all
those early time reverberations(at t=0+) is to equalize the
pressure between shock and piston, and make the total pres-
sure perturbation nearly equal to zero initially. However,
those initial reflections are also responsible for “exciting” the
internal modes of the shock front in such a way that, if some
of the inequalities in Eqs.(30) are satisfied, the shock starts
to oscillate simultaneously with the corresponding spectrum,
as has been shown in Fig. 9. In the next section we will show
how these modes couple the shock and piston surfaces.

C. Shock-piston coupling

To start the discussion, let us follow a sound ray, reflected
at the piston at some instant of timet=t0. It has a wave
vector skx,kyd where ky is the original perturbation wave
number at the piston, andkx is the longitudinal wave number
associated with that mode. This vector forms an anglef with
the axis normal to the piston. It is not difficult to see that the
time t1 of encounter of the sound wave front with the shock
front is given by

t1 =
t0bs cosf

cosf − bs
. s72d

It is clear that the encounter is possible only if cosf.bs, as
was also discussed for the first time in Ref.[23].

A natural question to ask is the following: Do the modes
found in the previous sections actually hit the shock from

behind once they are reflected or generated at the piston? If
the piston is responsible for the appearance of the additional
spectrum of eigenfrequencies, there should be some specific
interaction between both surfaces. The task consists in evalu-

ating the wave number vectorkW =skx,kyd of each of the
modes, in the resting fluid. In evaluating the angle it forms
with the normal axis we will be able to decide whether that
ray will actually hit the shock or not. It is convenient to use
the results of Fraley[10], actually the mode amplitudesassd
and bssd shown in Eq.(62). We will analyze the values al-

lowed to the projectionkx of kW along thex axis of the SAE
modes. The right facing sound ray, evaluated at any position
x,xs, has a Laplace amplitude given by[see Eq.(62) and
the following discussion therein]

bssfdexpssft − kxÎsf
2 + 1d. s73d

We prefer to distinguish here between the Laplace variable
used by Fraley(indicated bysf) and ours(which we simply
names). It is clear thatukxu=kuÎsf

2+1u. In addition, we can
defineqf, such thatsf =sinhqf. Then, thanks to Eqs.(64) and
(65), it is easy to getsf =sinhsq−usd, wheres=sinhq. There-
fore, Îsf

2+1=coshsq−usd, and we obtain

kx/k = − coshus
Îs2 + 1 +ssinus = sinhs− a + usd, s74d

where use has been made of Eq.(32). We easily deduce,
extrapolating from Eqs.(24) and(31), that the angle formed
by the sound ray associated with the first acoustic emission
mode with the horizontal axis is given by

f0 = arctanf1/sinhs− a0 + usdg. s75d

The angle formed by the second shock mode is therefore
given by

f2 = arctanf1/sinhs− a0 + 3usdg. s76d

Analogously, for the first piston mode, we get, extrapolating
from Eq. (39),

f1 = arctanf1/sinhsa0 − 2usdg. s77d

A general formula for higher order modes is easy to deduce
from the above results. It is interesting to see how these
angles behave as a function of the incident shock Mach num-
ber for the SAE situations studied in this work. The study of
the angles of reflection at the piston will allow us to under-
stand which of the modes actually succeed in coupling the
piston and the shock front. To this end, we plot in Fig. 11 the
limiting angle given by arccosbs [see Eq.(72) and the fol-
lowing discussion], and the angle of reflection of the first
shock mode as given by Eq.(75). We have used the van der
Waals gas studied in Fig. 3(which corresponds to a dimen-
sionless initial volumeQ1=3 and a dimensionless specific
heats1=30, as first studied in Ref.[7]). The horizontal axis
is the incident shock Mach number and the curves start and
end at those values between which there is acoustic emission
at the shock front. We see that the angle of the sound ray lies
outside the region of shock-piston influence, because the
sound ray forms an anglef0 for which cosf0,bs. For this
case, the shock emission mode does not interact with the
shock after reflection at the piston and this mode satisfies the
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standard DK dispersion relationship, as expected. Let us
change the gas parameters1 and the initial volumeQ1 such
that it is now possible to excite the first piston mode, but not
the second shock mode. In Fig. 12 we show the angles of the
rays associated with the first shock and piston modes, to-
gether with the corresponding limiting angle curve, for a van
der Waals gas withs1=30 and Q1=25. This case corre-
sponds to stronger shocks than in the previous case. The
minimum and maximum Mach numbers correspond to the
zone of the space of parameters inside which it is possible to

excite the acoustic modes. Let us concentrate first on the
curve representingf0 (the angle of the first shock mode ray).
It starts increasing and soon reaches the valuep /2 at the
point C. Beyond that point, increasing the shock Mach num-
ber further makes the angle greater than 90°. This means that
at that point the role played by the Fraley modesassd and
bssd is interchanged. That is, in the curved segmentCD, it is
the Fraley modeassd which is now transporting the informa-
tion from the piston to the shock. Anyway, independently of
this detail, the discussion concerning the angle of interaction
remains the same, as far as the coupling between both sur-
faces is concerned. The segmentCD shows a minimum but
the physical conditions are such that this minimum does not
cross the limiting angle curve. Therefore, the first shock
mode does not reach the shock from behind in this situation.
The curve continues fromD to the pointB where it termi-
nates. In between, at the pointE, which has the same Mach
number as the pointC, the piston starts emitting its own
mode. The anglef1 formed by this ray behaves in a similar
way asf0 did in Fig. 11. It stays always above the limiting
curve, which also means that this sound wave does not reach
the shock front from behind. We now change the gas param-
eters to s1=80 and Q1=35 and study the corresponding
angles in Fig. 13. The limiting angle curve is the solid line
AB. As before, we see that all the emission modes(either
shock or piston modes) start and end on the limiting curve
AB. Let us concentrate first, as before, on the curve associ-
ated with the first shock mode. It starts increasing atA,
reaches the valuep /2 at the pointC, and starts decreasing.
The behavior in the curved segmentCD represents the role
interchange between theassd and bssd modes, as discussed

FIG. 11. Limiting angle curve and reflection angle of the first
shock oscillation mode at the piston, fors1=30 andQ1=3.

FIG. 12. Limiting angle curve, reflection angle of the first shock
oscillation mode at the piston, and first piston mode, fors1=30 and
Q1=25.

FIG. 13. Limiting angle curve, reflection angle of the first and
second shock oscillation modes at the piston, and first piston mode,
for s1=80 andQ1=35.
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before. The pointsC and E have the same Mach number.
Beyond the pointE, the piston also starts emitting its own
mode. The curve associated with the first shock mode de-
creases and goes below the limiting angle curve. This means
that between the pointsI and J the piston succeeds in cou-
pling piston and shock using the first shock mode. That is,
between the pointsI andJ, the shock interacts with the pis-
ton with its own first mode. We also see that, at the pointI,
the second shock mode is excited. The second mode angle
curve increases and terminates at pointJ, where the first
mode curve again crosses the limiting curve. Beyond the
point J, there is no longer a second shock oscillation mode
and the first shock mode does not interact with the shock any
longer. This picture allows us to give a nice interpretation of
the shock-piston coupling mechanism: the second shock
mode is excited only when the first shock mode successfully
arrives to the shock. It is expected that if there is a possibility
of exciting a third shock mode, this will be because the sec-
ond shock mode successfully arrives at the shock. We have
been unable to get a third shock mode within the range of
parameters used in this work. We have at hand a kind of
iterative mechanism for the generation of the additional fre-
quencies at the shock: the moden+1 is excited only because
the moden has its rays inside the cone of influence defined
by cosf=bs. Nested with the shock modes we will have the
corresponding lower order piston modes. This happens, of
course, in some well defined range of the initial parameters,
as discussed in Eqs.(30) and(43). In this way, the role of the
piston is crucial for the excitation of the additional modes
found here. It is therefore clear that without a piston these
additional oscillation modes will not be generated. This is the
reason why the additional frequencies would never be pre-
dicted with an isolated shock model as has been used in the
past 50 years.

D. Application of these results to the Richtmyer-Meshkov
instability

In a real experiment, the shock will be driven by a contact
surface separating two different fluids, which will never be-
have exactly as a rigid piston. As is known, when an incident
planar shock strikes a corrugated surface that separates two
fluids with different thermodynamic properties, the corruga-
tion at the interface becomes unstable. The phenomenon,
known as the Richtmyer-Meshkov instability(RMI) has been
intensely studied for half a century, in particular in the iner-
tial fusion community, where corrugated shocks are gener-
ated during the implosion of the thermonuclear target
[10,12–18]. The outcome of theincident shock-contact sur-
face interaction is a transmitted shock into the second fluid,
and another shock or rarefaction is reflected back in the first
fluid. The refracted fronts leave an initial circulation at both
sides of the material interface, which will be later modified
by the sonic interaction with the escaping fronts because of
the acoustic field that fills the whole space. If both fluids are
ideal gases, it is known that the shock front ripples decay to
zero amplitude for large times. As a consequence, the normal
and tangential velocities reach, in both gases, values asymp-
totically constant in time. For this to happen, each fluid will

show a corresponding steady, rotational, and solenoidal ve-
locity field. The fact that the sonic perturbations decay to
zero when the fronts have traveled a distance several times
the corrugation wavelength ensures the asymptotic incom-
pressibility of the velocity field in both fluids, independently
of the incident shock intensity[36]. This fact guarantees a
constant asymptotic normal rate of growth of the contact
surface ripple, a fundamental parameter that has been the
subject of intensive research in the last five decades
[10,12–18,36,37,39,40,42]. How would this picture change if
one or both of the fluids exhibited spontaneous acoustic
emission at the shocks? It is clear that an exact study of the
effect of SAE on the RMI, for fluids with arbitrary equations
of state, is well beyond the limits of this work. However, we
could get a qualitative image of the changes introduced in
the growth dynamics, on the basis of the conclusions that
have been inferred in the preceding sections. As pointed out
some lines above, the classical normal rate of growth of the
interface in the RMI with ideal gases can be successfully
calculated due to the asymptotic incompressibility of the ve-
locity field, irrespective of the intensity of the incident shock.
This is one of the ingredients that would be absent if one or
both shock fronts started to emit acoustic waves downstream.
The space would be filled with stable sound reverberations
which do not decay to zero whent→`, spoiling some of the
mathematical simplifications that led to the simple growth
rate formula found in Ref.[36]. It could be possible, but
remains to be rigorously proved yet, that the asymptotic nor-
mal velocity in linear theory at the interface could be calcu-
lated now in the formdvi ,const+foscstd. The term const
would be calculated with a technique similar to that em-
ployed for ideal gases as has been done in Refs.[37,38], and
foscstd would be that oscillating part that comes from the
stable SAE modes filling the space at both sides of the ma-
terial interface. It should be noted, however, that the function
fosc is likely to be different from zero only in those cases in
which it is the piston that is radiating its own modes. That is,
the effect of the shock SAE modes would not be directly
seen as a stable, asymptotic oscillating contribution to the
growth rate. Rather, the SAE modes of the shock would ex-
cite the SAE modes at the piston, and this last excitation is
likely to contribute to the functionfosc commented on a few
lines before. However, the shock SAE modes would enter
into the const term, through the generation of vorticity
[36,40]. In the ideal gas case, the vorticity profiles enter into
the final growth rate calculation as a spatial average. The
value of this average is important to get the exact growth rate
in the strong compression situations[36,37,39,40]. In addi-
tion, in the ideal gas cases, the vorticity profile at either side
of the contact surface is an oscillating function of space
whose amplitude decreases asymptotically likeuxu−3/2. This
fact provides us with a fast and highly accurate algorithm
with which we can calculate the asymptotic normal growth
with the desired precision. In the case of the SAE environ-
ment, the shock fronts will not generate a spatially decaying
vorticity field away from the interface. On the contrary, the
vorticity profiles in this case will oscillate with a constant
amplitude. Therefore, the numerical value of the average of
this spatial vorticity profile would be different as compared
to the ideal gas case. This characteristic could also change
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the iteration process with which we obtain the value of const.
It is clear that these effects are a very interesting subejct of
research which could certainly have a non-negligible impact
in the field of high energy density experiments in fluids with
more exotic equations of state. This task is left for future
work.

VI. CONCLUSIONS

To summarize the work presented here, we briefly review
the results obtained and make some further comments. The
exact solution to the wave equation in the space between a
corrugated piston and the corrugated shock was calculated
when h,1−2bs

2. The conditions under which such a solu-
tion exhibits modes of stable oscillation have been discussed.
It is seen that, in addition to the well known DK mode of
acoustic emission, the shock could also exhibit other(finite
in number) stable eigenmodes. All these modes are excited
simultaneously att=0+. The standard DK criterion[Eq. (2)]
has been modified to account for these additional modes, as
shown in Eq.(30). Later on, when the normal and transverse
waves decay, the eigenfunctions will be the only perturba-
tions evolving stably on the shock surface. As the shock
propagates, the waves emitted into the compressed fluid fill
the space up to the piston surface, and if analogous condi-
tions are satisfied at the piston surface[Eq. (43)], the pres-
sure perturbations at the piston will also exhibit stable oscil-
lations. The same could be said for any other mathematical
surface traveling at constant speed, that is, 0,u,us. Situa-
tions in which these results can be verified, at least theoreti-
cally, have been presented by studying a van der Waals equa-
tion of state. Other works that have studied the same subject
have been compared with ours and the reasons for agreement
and/or disagreement have been discussed. It has also been
shown that the piston surface plays a prominent role in the
excitation of the additional shock oscillation modes found
here. Normally, from all the waves reflected at the piston,
only a small portion reaches the shock from behind. In gen-
eral, the first shock oscillation mode does not arrive at the

shock after reflection at the contact surface. However, for
some substances, at high enough compressions, this mode
can actually enter into the cone of influence between shock
and piston. In this way, the first shock mode successfully
arrives at the shock surface, which in turn excites the second
mode. It is therefore seen, that thanks to successful reflection
at the piston, the second mode is generated by the interaction
of the shock with its own first mode. In a similar way, it is
expected that in some other regions of the space of param-
eters, and at higher compressions, this second mode would
excite a third shock mode, after adequate reflection at the
piston, and so on. Nested in this process of shock mode
generation, we will also see a similar excitation pattern for
the SAE modes at the piston.
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APPENDIX: MODE AMPLITUDES

The amplitude a0 of the standard DK mode isa0
= f0K0/w0, where f0= faux

0 siw0d, K0=Ks0dsiw0d, and

faux
s0d sqd ; a2sqd + a2sq + 2usd + fcoshsq + 2usd

+ a1sq + 2usdgdPssq + 2usd, sA1d

Ks0dsqd ;
w4 − 1

1 − a10wsw2 + z0
2d

. sA2d

The amplitude of the piston mode isa1= f1K1/w1, where f1

= faux
s1d siw1d, K1=Ks1dsiw1d. The functionsfaux

s1d andK1 are de-
fined by

faux
s1d swd ;

4dv0wsw2e2us + 1d
w2e2us − 1

+
eussw2e4us + 1dfs1 + a10dw4 + s4a11 − 2a10de−2usw2 − s1 − a10de−4usgdPise2uswd

wsw2e2us − 1d
, sA3d

K1swd =
e−3ussw2e2us − 1d

s1 − a10dwsw2 + z1
2d

, sA4d

andz1=ÎU0e
−us. The amplitude of the second shock mode is given bya2= f2K2/w2, where f2= faux

s2d siw2d, K2=Ks2dsiw2d, and

faux
s2dsqd ; l2sqdfa2sq + 2usd + a2sq + 4usdg + l2sqdfcoshsq + 4usd + a1sq + 4usdgdPssq + 4usd, sA5d

Ks2d =
e−6ussw2e4us − 1dsw2 + 1d

1 − a10wsw2 + z2
2d

. sA6d
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