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Spontaneous acoustic emission of a corrugated shock wave in the presence of a reflecting surface
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An analytic model to study perturbation evolution in the space between a corrugated shock and a piston
surface is presented. The conditions for stable oscillation patterns are obtained by looking at the poles of the
exact Laplace transform. It is seen that besides the standard D'yakov-Konto(®Hgmode of oscillation,
the shock surface can exhibit an additional finite set of discrete frequencies, due to the interaction with the
piston which reflects sound waves from behind. The additional eigenmodes are excited when the shock is
launched at=0". The first eigenmodé&he DK mode is always present, if the Hugoniot curve has the correct
slope in theV-p plane. However, the additional frequencies could be excited for strong enough shocks. The
predictions of the model are verified for particular cases by studying a van der Waals gas, as in the work of
Bates and MontgomeryPhys. Fluids 11, 462 (1999; Phys. Rev. Lett.84, 1180 (2000]. Only acoustic
emission modes are considered.
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I. INTRODUCTION behavior as a function of time. That is, their result gives

The study of shock waves is a subject of great theoreticafufficient and necessary conditions for the shock front to
and practical importance in hydrodynamics and related@scillate with a characteristic frequency without damping,
fields. Extensive use has been and is still being made dhe so called spontaneous acoustic emis$BAE) and is
shock waves to study the properties of gases, liquids, an@xpressed for a general equation of state. The same problems
solids at high pressures and temperatures for equation #&fere later studied in detail by Erpenbef@d], Fowles, and
state(EOS measurementgl—3]. Subsidiary to these experi- Swan[25-2§. Recently, the subject of shock stability has
ments we face the problem of shock front stability whenalso seen a renewed interest as it can provide important in-
subjected to corrugations of small amplitude. In fact, thesights into the dynamics of shock waves propagating in met-
growth or decay of the perturbations imposed at the surfacals [29], diatomic gase$30,31], and in situations of astro-
of the shock is an issue of fundamental importance that haghysical interesf32]. The problem of shock stability in ideal
fascinated the scientific community during the last 50 yearsgases has been investigated again in a recent work by Robi-
We could find perturbed shock fronts in astrophysical phenetet al. [33]. All the previous works have emphasized the
nomena[4], geophysical experimen{®], and inertial con- importance of the slope of the Hugoniot curve in order to
finement fusion(ICF) implosions[6—9]. The hydrodynamic study the stability properties of the shock wave. As usual, let
fluctuations generated by deformed shock waves could actws consider the quantity

ally trigger deleterious hydrodynamic instabilities in ICF tar- _ dv
gets, namely, the Richtmyer-MeshkofRM) and the h= M(-) . (1)
Rayleigh-Taylor(RT) instabilities[9-19. The first theoreti- Vi=Veldp/y

cal works that dealt with the stability properties of corru- 1o quantityV is the specific volume of the fluid. The sub-
gated shock fronts are those of Robg@8], D'yakov [21],  gerint “f” refers to the final compressed state and the sub-

and Kontorovich[22,23 The early work of Roberts studied g¢yint «17 refers to the initial state of the fluid. The derivative

the evolution of a corrugated shock wave that moved into afy taxen along the Hugoniot curve and calculated at the final

ideal gas. He showed that the initial ripple at the shock SUleompressed state. The work of Dyakov and Kontorovich

face would eventually show damped oscillations as the shock, \ved that the condition for the emission of undamped
moved away from the interface and the shock surface would, ,nq waves from the shock surface is

regain the planar shape. The solution was analytical and

made use of Laplace transforms of the fluid equations in the h.<h<1+2M;, (2
I|r,1ear approximation. . On thg other. hand, 'the works OfWherer is the shock wave Mach number with respect to
D’yakov and Kontorovich studied the interaction of a planarthe compressed fluid, artd is defined by

shock front with sound waves that collided with the shock '

from either ahead or behind, and made an eigenmode analy- 1 =M1 +pslpy)
sis of the perturbations that develop at the corrugated front. = m
They obtained explicit conditions for stability in terms of the f Piip1
shock front Mach number, density compression ratio, and thevith p; the density of the compressed fluid, gndthe initial
slope of the Rankine-Hugoniot curve at the final compresdensity before shock compression. Ideal fluids do not satisfy
sion state. In particular, they derived an explicit criterionthe previous inequality and hence there is no possibility of
(from now on we call it the DK criterionin order for the  observing acoustic emission in ideal gases. On the contrary,
corrugations at the shock wave to show a stable oscillatorgome other substances with nonideal equations of state may
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satisfy the previous inequality in some domain of the spac&ormal to the shock will always be less than the shock speed
of physical parameterfdl—7,21-31 itself [23]. This means that the DK shock mode of oscillation
The usual approach to derive the above inequality consistdoes not couple piston and shock. Therefore, as far as the
in perturbing the shock surface and doing a normal modevolution of this mode of oscillation is concerned, the exact
analysis for the perturbations in the compressed fluid. Allboundary condition at the piston is irrelevant. Actually, the
perturbed quantities behind the shock surface are assumeddorrugated piston is only necess#at t=0%) in order to ex-
depend on the spatial and temporal coordinates in the sepaite the DK oscillation mode. Immediately afterward, any

rable form[1] sound wave emitted with frequency and wave vector corre-
o, ) sponding to the DK mode would be reflected some time later,
5p(xy,t) = Aexi(kx’ +ky' - wt)], (4)  without hitting the shock ever again. This fact explains the

where 8¢ represents the linear perturbation of any fluig 2ccuracy of all the previous work in getting the DK mode
quantity ¢. The coordinate’ is in the direction normal to while “forgetting” the piston surface. However, this approxi-

the shock front where the positivé axis points inside the Mateé boundary condition at the piston surface does not allow
compressed fluid. The coordinagé is in the tangential di- forthe.ma_lthematlcal solution to display the add_|t|onal mpdes
rection. Equatior(4) is proposed in a reference frame mov- of oscn_latlon_qf the shock front that can t_>e excited at higher
ing with the shock surface. The quantitiesandk, are the shock intensities. We know that, depending on the boundary
projections of the perturbation wave number along the coorcondition we require at the piston surface, the structure of the

dinate axis and is the time. The Rankine-Hugoniot cond- Perturbation  field “behind the front could be different
tions are linearized around the final state and a dispersioﬁa’10'37'4?L It will be seen _Iatgr that, |r'1.add|t|on to the
relation is obtained that enables us to calculate the frequen pectgd D',( mode olf oscillation, adhdltlorr:al krr:odes_forl
of the oscillations as a function of the wave number. Usually2coustic emission could appear and the shock front ripple
far behind the shocknamely, the piston surfageall the would oscillate as a result of the superposition of all those
perturbations are assumed té) vanjahb,22,25,3L in order modes. In order for the shock to oscillate with these addi-
that the perturbation field be bounded in the whole spacet.'onal agenfrequi_nues, th?] stlandard DK cnterI[th. & h
Adopting this approximation, the usual DK stability criterion need; to be modified and the ower b?“”d would be another
is obtained for the emission of undamped acoustic wavefnction of the shock compression ratio and the shock Mach
[1,5,22,25. In the present work we relax this boundary con-"umber. This phenomenon occurs for relatively strong
dition far behind the shock. In fact, as is already known fromSH0Cks. Similar conclusions can be obtained for the pertur-
the research done in the RM instability, the dependence (ﬁatlops at the piston. we QOUId find zones in the space of
the perturbed quantities on the variableandt may not be physpal parameters in which the pressure perturbations at
always written in the separable form as expressed in the prébe pl_ston also show stable oscillations, as a Fesu't of con-
vious Eq.(4). The reason is that one of the boundarigigher structive interference of the wave pattern that fills the space
the shock front or the piston surfgde moving in time and behind the shocﬁ. bati bl h | b
therefore the domain of integration is not square as irxthe Up to now, the perturbation problem has always been
space. The consequence is that we cannot use separationsﬁlv‘ad by considering the evolution of a single isolated
variables in thex,y,t space to integrate the wave equation.S ock. Due to the inherent mathematical difficulties of in-
As a matter of fact, the exact solution to the wave equation iff!uding a reflecting piston in the space behind the shock, the

the space between the piston and the shock is written d°SSible generalization of E(R) in this case has never been

[8,10,33-3p considered for an arbitrary EOS. It is usually assumed that
Y piston and shock separate quickly from each other, and there-
Sh(x,y,1) = F1((cet = x)/(cet + X)) Fo(k(cet — X) fore any asymptotic solution that appears for sufficiently

large times will not feel the piston causal influence. How-
ever, as will be shown in the rest of the work, stable acoustic
where f; and f, are suitable functions that must be deter-€mission modeseither the classical DK mode, or the ones
mined from the boundary and initial conditions at both thefound in this work are excited at the shock surface sirice
shock front and the piston surfag#0,12. The quantityk is =0". That is, when the shock and piston are still very near
the piston perturbation wave number, which is equal tgeach other. As a matter of fact, the perturbat_lon at the shock
27/\, and\ is the perturbation wavelength. In principle, the can always be thought of as a superposition of the form
previous solution would not look like E@4) in the general  Psadt) + 8Pgedt), valid in the whole interval O+t<<o.
case. We must stress the fact that, even if the approximatEhe functiondpsag(t) is the possible oscillating contribution
form adopted in Eq(4) is used, the DK criteriofEqs.(2)  from the acoustic emission modes, adme(1) is that part of
and(3)] is, however, correct. The reason is that the DK modethe solution that decays in time. In fact for an ideal gas, it is
of oscillation does not actually interact with the shock afteralways dpsag=0, and we only get the well known decaying
reflection at the piston surface. That is, when Bj.is sat-  oscillations, which behave liképgedt) ~t™32 for large times
isfied, the shock emits sound waves at the DK frequency, anflL0]. On the contrary, for another EOS, we could see a non-
those waves would reach the piston and reflect there. Howzero stable contributiodpsag(t) # 0. These stable perturba-
ever, the angle of reflection would be such that the reflectetions could be the result of oscillations with only one fre-
sound wave would never catch the shock, because the prquency(as in the standard DK situatipor even with more
jection of the velocity of the sound wave along the directionfrequenciegdue to the effect of the right facing sound waves

X (ct + x))cosky, (5)
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wouch/lopez uX. It is convenient to study the hydrodynamic perturbations
in a system in which the piston surface is at rest. From now
on, we will work in the piston reference frame. Therefore,
v v, the shock moves to the right with velocityX=(u-vp)x
, compressing the fluid from its initial densigy, to its final
I " u-y value p;. The fluid has a velocity o4X ahead of the shock
compressed fluid I > and comes to rest after crossing the shock front. We consider
' an arbitrary EOS for the fluid and do not restrict the model to
\ ideal gases. The sound speed of the compressed fldd is
o, ) , The piston wall has a corrugation of wavelengtland am-
[ plitude ¢. We assume linear perturbations, so thigt\.
Vé ‘ As the shock moves away from the piston, the amplitude of
. its ripple will change in time. Depending on the properties of
the fluid being compressed, the ripple amplitude could decay,
FIG. 1. Corrugated shock front moving ahead of a corrugatecshow stable oscillations or actually grow. We will concen-
rigid piston. The piston has a transverse corrugation of ampliigde trate on the conditions that enable the shock front ripple to
and wavelength\. For explanation of the symbols, see the text of ggcillate with a characteristic frequency.
the paper. We linearize the fluid equations, assuming that the depen-
dence on theg coordinate scales like céy for the pressure
impinging on the shock and assuming that the Hugonioperturbationssp(x,y,t). In order to solve the equations by
curve has the correct slope in the pressure-volume plane, argparation of variables, we use the following coordinate
the shock intensity is high enought will be shown that transformation, as suggested by Zaidgd4-37: r coshy
these additional stable modes can be excirly if we in-  =kgt, r sinhd=kx. The shock wave coordinate is defined by
clude the shock-piston interaction in the formulation of theg,=tanhg;=us/c;<1. The piston surface is defined
problem. Of course, if the Hugoniot curve has not an ad=0. After some algebra, the fluid equations can then be com-
equate slope for the additional set of waves to appear, onlgined into a wave equation for the dimensionless pressure
the standard DK waves will show ywhen Eq.(2) holdg. It fluctuationsép, in the new coordinatef37,3§
is therefore clear that the standard DK criterion should be ~ R R
generalized to include the effect on the shock evolution of #p P _ i(}@) 6)

, . r— +—+rép=
the sound waves reflected at the piston. The results obtained az  or o a0\ r 96

here are based on exact and rigorous linear theory, as alread . , o
used to solve the linear perturbation problem of the RM in_v%ere op is defined by dp(x,y,t)=piC;p(x, )cosky. The

stability [37,39. equation above can be solved in two different ways. The

This work is organized as follows. In Sec. Il the exact SIMPIESt one consists in solving it in the physical spaae
solution in the space of physical coordinates/,t is ob- by means of series of Bessel functions. The coefficients of

tained. The Laplace transform of the pressure perturbatiorid!® €xpansion are determined from the boundary conditions
is also calculated as a solution of a functional equation. Thé&t the shock and at the piston, in much the same way as has

limits of validity of the solution are discussed. The stability P€€n done to study the RM instabili{36,39. The other

properties of the flow are examined in Sec. IIl by looking for @PProach consists in Laplace transforming the wave equation

the poles of the Laplace function. Only the specific case 0f:a.md the boundary conditions. In this way, a funcnonall equa-

spontaneous acoustic emission is considered. The additiond®" for the Laplace transform of the pressure fluctuations at

spectrum for the shock front oscillations is derived analyti-1N€ Shock front is readily obtained. As for the series expan-

cally. In Sec. IV the results of the preceding sections aréOn solution, itis easy to see that the following function is

calculated in analytical form and used to study a real gad® mo+st general solution of the wave equation that satisfies

equation of state as in Ref&,7]. The frequencies and mode op(t=07)=0 [8,34-36,3%

amplitudes are compared with the results of the linear series .

expansion deduced in Sec. Il. A qualitative discussion of the op= Ey D.(6)3,(r). (7)

results and a comparison with the findings of previous works

is given in Sec. V. A brief summary is presented in Sec. VI.The functionsJ, are the ordinary Bessel functiof$0]. The
coefficientsD, are functions of the coordinateand must be

piston surface corrugated shock

Il. PRESSURE PERTURBATION FIELD BETWEEN THE determined with the boundary conditions. As already dis-
PISTON AND THE SHOCK FRONT cussed in Refs[36—-38 they are given byD,=, coshvé,
where 7, have to be determined from the shock boundary
A. Wave equation conditions.

In Fig. 1 we show the geometry of the shock and the
piston surface. In the laboratory frame of reference, the pis-
ton starts suddenly to move &t0 with velocityv X. As the
surface of the piston is corrugated, a perturbed shock front At the initial instant of time, the shape of the shock front
will be launched at=0" that moves to the right with velocity will reproduce the corrugation at the piston wall. Therefore,

B. Boundary conditions at the shock front
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let ¢(t)cosky be the shock front ripple. Its amplitudeg(t) is C. Functional equation for the Laplace transform of the
a function of time and its initial value ig,. For the sake of pressure perturbations

simplicity in the notation, let us define the dimensionless  after some algebra, and using the fact that our piston is a
velocity  perturbations éu and v by du(X,¥,1)  yigid wall, the Laplace transforms of the pressure perturba-
= au(x,t)cosky, dvy(x,y,t)=dv(x,t)sinky and the dimen- tions at the shock can be seen to satisfy the functional equa-
sionless density perturbation sp by  Sp(X,y,t) tion [37]

=p(x,t)cosky. After some algebra with the linearized

Rankine-Hugoniot equations, the boundary conditions at the SP(a) = Na(a) + No(a) SP<(q + 265), (15
shock front can be combined into a single equation thafyhere the functiona, , are given by

couples both the shock front ripple and the pressure pertur- '

bation, in ther, 8 coordinateg12,37,39: A(q) = ay(q) + ap(q + 26y
. . ' coshq - ay(q)
Wl(a_éb) - %(@) + E &, (8) (16)
or o, T a0 ), coshbg M(G) = cosh(g+ 26, + ay(q + 26
2 - .

where &=k, and the equation fof is coshq = ()
The auxiliary functionsy, , are
& 1 (h+ l)COShHS(éf)) ) o
T oL A 05" i a sinh 6,
o 2Bs 1-=pilp; a,(Q) = agpsinhg + sinlhlq' ay(Q) = - dvg sinhqs’

The constant®V, , andE are . .
' where the important parametetg, and o4 are given by

17

l:_(l—ﬂi)(zh—l)1WZ:_Zﬁs(lz,Bg), _ _h-1 _ Bh+lp (18
1+282-h 1+282-h M07 o T T 21— g2y
2
2Bs  na (10) and dv, is the initial lateral fluid velocity in the space be-

1+ 2,8§— hc_f' tween the shock and the pistqat t=0%), given by dv,

i . =v4ki/p. Equation(15) is an inhomogeneous linear functional
Equations(8) and (9) are the boundary conditions at the gqyation of the first orde#2,43. The most general solution
shock front. To find the coefficients of the series expansion, i is the sum of a solution to the homogeneous equation
[Eq. (7)], it is. better to work with the Laplace tfansform of plus a particular solutior{34,42,43. In this case, it is
the perturbations at the shock frof#9]. We previously de-  giraightforward to find a particular solution. It is the result of
fine the Laplace transform of any perturbed quaniifr,6)  ap, jterative sequend@7,42,43

(from now on, Laplace transforms are indicated with capital -1

letter -
etiers as 5P = (@) + 3 ha(a+ 2109 [T hola+ 206, (19
0 j=1 n=0
- —Sr
0(s,0)= fo dr €5¢(r, ), (19 Regarding the homogeneous soluti84,42,43, it is clear
that it satisfies an equation of the formaP,(q+26y)
and change to the new variabdpdefined bys=sinhqg, as  =6P,(q)/\,(q). As P is a Laplace transform, it is clear that
suggested by Zaide[33]. After some algebra, we find the it should vanish when Rg— . This will happen only when
coefficients, and 73 [39]: I\o|>1. This last condition is equivalent to asking for
h>1-2p2 Therefore, ifh is bounded from below as in the
m = 2E&, (12) last equation, the solution to the homogeneous equation
should be added in E@19). If, on the contraryh<1—2,8§,
2(W, + 2EA)cosit 65+ 1 the solution to the homogeneous equation is divergent and
3= (W, - W, tanh 3,)cosh, cosh 393771- (13 must be excluded from the general solution. In this work we

will only study situations in whicth < 1—2B§. Therefore, we
The other coefficients are found after solving the recurrencéake Eq.(19) as the complete anelxactsolution to the two-
equation dimensional(2D) perturbation problem of a shock traveling
into an undisturbed fluid driven by a reflecting piston. The
2(W, + 2EA)cosh(2n - 1) 6 cases that satisflg>1-242 are left for future research.

Trane1 = [W, — W, tanH(2n + 1) 6Jcosh2n + 1) 6, 2"
_ [Wy + W, tanh(2n - 3) 6s]cosh2n - 3) 6
[W; =W, tanh(2n + 1) 6 ]JcosH2n + 1) 6

III. SPONTANEOUS ACOUSTIC EMISSION

A. Poles of the pressure function at the shock front

T2n-3»
1. Standard DK mode of oscillation

As can be seen from the definitionsiof , [Eqs.(16)], the
whereA=1/(28,)(h+1)/[1-(p1/ps)]. term [coshq—a4(g)] is a common denominator to all the

(14)
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terms in the right hand side of E¢L9). Therefore, its poles 15 _ (b), @,<0, 0, <0
give the information about the stably oscillating part of the ’
solution in thex, t space. We remember that we are looking
for the zeros which are pure imaginary numbers. It is noted
that the commented factor can also be written a{sﬂ%
—-a4(9)] in terms of the Laplace variable Therefore, we
keep in mind that we must work with the positive determi-

( b2_ 1 )1/2

0.5

nation of the square root. Let us make the variable change ‘ ,z'
s= 1<ea+iﬁ_ L ) (20) 2
2 etip ol’ ! |
0 0.5 1 1.5 2
in terms of some new auxiliary variablesand g. If we are b = (e% e?) /2
looking only for purely imaginary solutions in the variable (@)
s, then it is immediate to see tha#=+iw/2. Then, s
=+(i/2)(e*+e™%) and \fsz—ﬂzi(iIZ)(e“—e‘“). In order to 3 _ f(b) , & > 1
deal only with the positive determination of the square root,
we must requirex>0. Then, our equation looks like 251
1 1\ a1 20, 2
Z(e e“)_ 2 (e +e“) e*+ 1/’ (2) 1.5 * (1% 1)
or e
0.5 -
2= 1=aob- 21, (22) .
b 0 0.5 1 1.5 2
whereb=(e*+e %) /2>1. The last equation has a solution b
depending on the values of,; and aq4. Let us first assume (b)
that bothay and aq; are negative numbers. This is equiva- 3 _
lent to saying that the D’yakov-Kontorovich parameter de-
fined in Eq.(1) satisfies simultaneoushh<<1 andh>-1 2r et
[see Egs(18)]. If we want to have SAE under these condi- T+ et (b%1)"”
tions, the function defined by the left hand side of EZR) 0 pesst "
must intersect the right hand side at some valuk. dfet the 4L
auxiliary function f be defined byf(b)=a9b—(ay,/b). fb), o,<0, e, >0
Then, according to Fig.(3), a solution is possible only if 2
f(b=1)=0. According to Eqs(18) this is equivalent, after -3
some algebra, to requiring thiag<<h, with h; the parameter -4 \ | | J
defined in Eq.(3). It is easy to prove tha,>-1 does al- 0 0.5 ! 15 2
ways hold. Otherwise, we would obta,>1 which is not ©
possible for a compressive shodk2,26,27. That is, for this
special case, the condition for SAE is FIG. 2. (a) Conditions for the existence of an imaginary com-
h.<h<1. (23) plex pole foréPs. The curves drawn correspond to the cagg<0

and a1,<0. For explanation of the symbols, see the text of the
The next case is that in whicl > 0. We must distinguish  paper.(b) Same aga), but the curves drawn here correspond to the
between 6< ayp<1 anda;o>1. In the first case, it must be case 6<a;0<1 anday;<0. For explanation of the symbols, see
that 1<h<1+2B5 which implies necessarily that;;<<0 the text of the paperc) Same aga), but the curves drawn here
[according to EqS(18)]. This situation is shown in Fig.(B), correspond to the case y<0 anda;;>0. For explanation of the
and there is one possible solution agairf(f=1) =0, which ~ symbols, see the text of the paper.
impliesh,<h. If @;o>1 itis clear from the figure that there
is no intersection for the curves, and hence no possibility othe union of two disjoint intervals. The first segment
SAE. If ay;>0, we haveh<-1, which makesy;,<0. This  [h;<<h<'1] corresponds to situations that haxg,<0, and
situation is shown in Fig.(2) and it is clear that there is no the second segmefl <h<1+23] to situations in which
possibility of intersection between the curves drawn there0<a;o<1. At least for the van der Waals gas cases studied
That is, there is no acoustic emission forx—1. If both ;g in Sec. IV, only the first segment is always realized. We do
and «4; are positive numbers, we should simultaneouslynot know if there is any Hugoniot curve that can realize both
haveh>1 andh<-1, which is impossible. Then, regarding situations. Anyway, the common way of summarizing the
the first shock eigenmode, we have arrived at the well knowrstandard criterion for SAE is to write the general Eg)
condition for acoustic emission summarized in E). How-  which results from the union of these two disjoint intervals.
ever, it is noted that the inequality <h<<1+2g;is actually  In addition, we recall that we do not include the solution to
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the homogeneous functional equation, which makes our ag=or very weak shocks, the terms likg (q+2n6y) with n
proach valid only in the range,<h<<1- 2,8S For situations =1 are negligibly small and do not count in the perturbation
in whichh>1- Zﬁs the solution to the homogeneous equa-evolution. For strong shocks, the influence of ftamost

tion could add additional modes of oscillation in addition to normal incidence sound wave reverberations between the
the modes found here. These cases will be studied in futurgiston and the shock becomes more important. This behavior
work. Finally, before finishing this section, we solve E2j) is a consequence of the fact that both the piston and the
in order to get the frequency of the oscillation mode. It is notshock front “speak” to each other for a longer time for stron-
difficult to get a second order polynomic equation for theger shocks. For weaker shocks, this interaction can be ne-
quantity €*. We obtain, after some algebra, glected. Therefore, there is the possibility to excite additional
modes at higher shock Mach numbers.

[
_ ag = 210~ 2011+ V1 + dagy(ag1 — aq)
l - alo

where only the positive solution far has been kept, that is, Let us consider for simplicity the lowest shift in the addi-

T,>1. Then, the only two imaginary poles arésg where tional factors that composéP,, that is, terms of the form
0 y ginaty p % 1/[cosHqg+26)—a41(q+265)]. We are looking for poles of

. (29 2. Additional modes of oscillation at the corrugated shock front

_ | this term which are purely imaginary complex numbers. We
S=5| V0¥ A @5 wil essentially follow the same technique as has been used
0 in the previous section and make use of E2f)). After some
Regarding the polesigy, they correspond to the mode pre- straightforward algebra, and keeping in mind that we require
dicted by the DK criterion[1,3,5-7,21-3B However, we «>0 andB==ziw/2, we get
also have additonal denominators which show a shift irgthe

variable. For example, the factor [tbsHq+26)—a;(q b cosh 2+ \b? - 1 sinh 2,

+26,)] appears from the second term on, and factors of the = a; b cosh 2+ \,bz_ 1 sinh 2]

form 1/[cosiq+46y)—a,(q+46s)] appear since the third

term, and so on. Physically speaking, for very weak shocks, _ 11 (26)
the first termi4(g) would be more than enough to describe [b cosh X+ Vb? =1 sinh X’

the perturbation field in the whole space with negligible er-
ror. That is, the additional terms, which are the functians
and A, evaluated at values af shifted by multiples of 2, _ + P2 =1 i
become negligible and can be safely ignored. Thus, there are 9(b) = b cosh 2, + yb" - 1 sinh 2]
no additional poles besidegss for weak shocks. However, _ a1

as the shock intensity increases, the shifted functions inside [b cosh 2+ Vb2 - 1 sinh 2]
the solutionéPg become as important as the first nonshifted o _ _

M\1(g) function. This is because, as the shock wave intensityrhe minimum possible value df is b=1. Therefore, there
increases, the downstream shock Mach nunw de- will be a solution |fg(b:l) is greater than or equal to the left
creases, and the interaction with the piston becomes mofeand side of Eq(27). that is, if the following inequality is
important. This fact is reflected by the parametgiinside  satisfied:
the argument of the\; , functions, which arise due to the _
Doppler shift after reflection of the sound waves coming a11 = ayocostt 26 - sinh 20 cosh 2, (28)
from the piston on to the shock surface. The paraméi&  This condition can be rewritten in terms of the DK parameter
a monotonically decreasing function of the Mach numberh, and we get,,<h where the parametdr, is given by

whereb=(e*+e™%). Let us set

(27)

1 - BA(1 +pslpy) + (1 - BA[sInI? 265+ 28, sinh 26, cosh 295]
1-B2(1-pslpy) + (1 - BA)sint? 26,

hc2 - (29)

It can be seen that it is alwayg <h.,. This means that the have a(2n)th order pole can be sought. The modifications to
condition for the existence of the polegsgis also satisfied, the previous equations are straightforward and we get
which implies that the additional pole coexists with the DK 5

mode. It Fi)s noted that a secondppole would exist above a he<hep <heg < -+ <hen<h<1-25. (30
certain minimum Mach number. The same type of calcula-The quantityh,,, is indexed according to the “number of
tion can be done for all the factors of the form[@dsiq  shifts 6" in the variableq that gave rise to the correspond-
+2n6s) - a;(q+2n6y)] and the conditions needed in order to ing pole. Clearly, it ish.=he. For a given shock and EOS,
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the DK B. Poles of the pressure perturbation at the piston surface
parameteih could fall anywhere inside the subintervals de- . . o
fined in the above equation. Whichever is the actual subinter- We deduce here the functional equation satisfied by the
val, the standard DK mode will always be prespdmitting ~ Piston pressure perturbation®;(q). After some algebra, we
that Eq.(23) holdg. The reason is that this mode is actually 9et[37]
independent of the boundary condition at the piston, as will
be discussed in Sec. V. Only the additional spectrum of
modes depends on the existence of a left boundary that re- OP;(a) = x1(a) + x2(q) 6Pi(q + 265), (36)
flects the sound waves emitted by the shock. The boundary is
only necessary to excite them ta0*, because of succesful ) )
reflection of sound waves at the piston and their subsequet¢here the functiong, andy, are given by
interaction with the shock, as will be discussed in Sec. V.

Let us finish this paragraph by giving the expression for
the imaginary poles that form the rest of the spectrum of the i) = 2a5(q + 69 coshq + 6s)
corrugated shock wave. To do it, we go back to &8), and coshg+ 6y — ay(q+ 6y coshq
note that it can be easily transformed into a polynomic equa-
tion of second degree ¢, as before. After some algebraic
manipulation, we can see that

_ coshg+ 6) + a;(q + 65 coshqg + 26,)
" cosiq+ 6) —ay(q+ 6y  coshq

x2(q) (37

Tz = 62“2 = Toe_405

_ | a0~ 2095+ V1 + dayq(ag - agp)
1-ay

}e“”’s, (31)

We can get a particular solution, in the same way as was
done in Eq.(19). We just need to replace by y. Regarding
which can be easily generalized for the higher order poles age validity of retaining only the particular solution, it is easy
to see that this is licit to do only whem< 1-232. This last
inequality is satisfied assuming thdart<1—2,8§, because
ond Bs<1. Concerning the poles afP; the situation is essen-
e (32 tially the same. Indeed, the poles are given sy, where

Top = e2%n = Toe_zn‘gs

_| @0~ 201+ V1 + dagy(aq; — aq9)
1 - Gflo

Accordingly, the only two second poles are given bg,t

wheres, is 1/ — 1
> Son+1 = §<\T2n+1 + ,—> ) (38)
1/ — 1 VTone1
52:—<\/T +’,—_), (33)
2\ 2 VT,

whereT,,,; is calculated with
and the generd2n)th order poles areis,,, where

Topey = €221 = Tye 226, (39

S 1( T+ ) (34)
= — \J —_ .
n 2 2n VTzn

In Sec. IV we will show situations in which at leagtands, Obviously, the first pole at the piston appears at a high
are excited simultaneously for a real gas. Having calculategénough Mach number, such that a condition analogous to Eq.
the poles and given the conditions for their existence, ther€27) is satisfied:

remains the question of knowing how many additional eigen-

frequencies are possible. The condition that 0 implies

that|T,,|> 1. This means that the numbein Egs.(32) and aq1 < a0 COSH 65— sinh 6 coshé, (40

(34) is bounded from above. In other words the shock can be

excited, at most, with a finite number of eigenfrequencies.

The exact number depends on the EOS of the fluid. It can behich can be, in turn, rewritten in terms of the DK param-
given by taking the logarithm of Eq32): eter:

InT,
(number of poles at the shock n< 200

S

(35) hy < h. (41)

It is easy to see that the same analysis can be done for any

surface at which the self-similar variabéeis constan{with In general, for high enough shock Mach numbers we could
0= 0= 6,). We will do it for the piston surface, which has define a(2n+1)th order pole, such that the condition for its
0=0, in the next subsection. existence iy one1) <h wherehgn,y) is given by
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h L= +pdpy + (1= BYsintF(2n + 1) 6 + B sinh A2n + 1) 6]
o2n+1) = 1- 841 - plpy) + (1 - BIsint? 2n6,

. (42

According to these results, the situation here does not seefil,;,Q;) and its final statéIl;,Q;). After some algebra, we
to be very different from the oscillations found at the shock.arrive at the equation for the Hugoniot curve:

To sum up the results of this section, in the general case, it
would be possible to obtain a nested set of subintervals of the 91 3 31
I +—/(BQ-1)-3—=
form Q1 Qs
, ;= I14(Qr,Qy) = . 370 3
hC < hCl < hCZ < e K hc(zm < hc(2n+l) <h<l1l- ZBSY _1(3Qf — 1) — _<_f + 1>Ql+ _Qf
8 16\ Q, 8
(43)
: . _— 9/ 1 3 3(Q
with n given by the upper bound of E¢35). The situation -]tz = +1
indicated in Eq.(43) would correspond to the simultaneous 81Qx 8 16\Q ) (45)
excitation of eigenmodes at the shock front and at the piston ﬂ(SQ ~1)- 3( Q¢ +1]0,+ §Q
surface. The pressure oscillations at the piston would be fur- 8 f 16\ Q, 17 gt

ther modulated by the natural frequenky; of the sound

waves traveling in the resting fluid. The dimensionless DK parameter can be written in terms of

the derivative ofll with respect toQ along the Hugoniot

IV. SPONTANEOUS ACOUSTIC EMISSION AT A SHOCK curve, in the final state:

FRONT MOVING INTO A VAN DER WAALS FLUID 65§< 1 )(3 +IQ7 1 )(dnf)‘l
h=—8l1+— || =0 - = [ =) . (46
6Qr-2 Q

A. Zero-order flow magnitudes - sz dQ;

The model developed in the previous section is valid foran additional requirement is that when taking the gas from
any arbitrary EOS assuming that the fluid is inviscid. For anits initial to its final state, the curve that joins both states be
ideal gas equation of state, the inequalities displayed in Ednside the region defined by the conditigs?V/dp?)s>0

(2) or Eq. (23 for the DK mode, or the more general in- [44]. Otherwise, the front will not be compressii&3,6,44.
equality Eq.(43) would never be realized. This is a well

known result: a corrugated shock moving in a homogeneous
ideal gas is superstabjd1,45 in the sense that any pertur-
bation imposed on its surface would attenuate and the shock
regains the planar shape. The situation is quantitatively dif- 1. Pressure perturbations at the shock front
ferent for a nonideal EOS. The simplest case to study is that . .

b y In this subsection, we use the results of Sec. Il to get the

of a real gas with a van der Waals EQ&6,7]. We use it . ; , X
9 @56,7 evolution of the pressure perturbations as a function of time.

here, as it provides us with a simple background flow o . ) . L -
which the results deduced before can be shown. As is already'® goal is to use the series of Bessel functions indicated in
g. (7). To collect the information necessary to deal with a

known, the phenomena of acoustic emission are excited f . . .
P r§pecn‘|c case, we must calculate the coefficiemts,; with

from the ideal gas zone. That is, near the gas-liquid transfo - o
mation curve in th&/-p plane, where the nonideal character- the help of Eqs(12-(14). The initial state has a specific

istics of the gas are important. The dimensional equation Ofolume Ql::.)” which gives us a dlmen5|onless_pressHﬁe
state is given by2,7] =0.667, having assumed that the temperature is equal to the

critical temperaturé®,=1). In Fig. 3 we show the behavior
a of the pressure perturbations for this case as a function of the
<p+ﬁ)(v_b) = NigT, (44) distance traveled by the shock from the piston. The final
compression volume i®;=1. The upstream Mach number is
whereN is the number of molecules per unit maksgis the M, ~1.262 and the downstream Mach numbeBis 0.726.
Boltzmann’s constant, an@l is the temperature. The param- |t js clearly seen that after a short transient, the perturbations
etersa and b are specific to the gas and roughly speakingat the shock front oscillate with a definite amplitude and
they take into account the finite volume of the molecules andrequency. There is qualitative agreement with the observa-
the interaction among them. The thermodynamic variables ofions of Bates and Montgomefy]. With the series expan-
the critical point(Vey, per, Ter) can be written in terms of the  sion used here, we can only measure the amplitude and fre-
microscopic parameteesandb: V., =3b, p,,=a/(27b2), and  quency of the oscillations directly from the graphic itself.
T =8ual/(27Rb), where v is the molecular mass arf@is  Nevertheless, in the next section we will do the same job by
the universal gas constant. We define the dimensionless vaiaking an inverse Laplace transformation of the results ob-
ables: II=p/p;, O=T/T,, and Q=V/V,. The Hugoniot tained in Sec. lll, calculate them analytically, and compare
curve is characterized by the initial state of the upstream gathem with the results obtained in this subsection. For the

o1

B. Temporal evolution of the perturbations: Series of Bessel
functions [Eq. (7)]
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FIG. 3. Dimensionless pressure perturbations at the shock front
as a function of the distance traveled by the shock in units dhe FIG. 5. Parameters,—hp, he—hp, andhe,—hp as functions of
gas parameters arg =30, Q;=3, andQ=1. the upstream Mach number.

same gas parameters, we show the DK funchignh in Fig. ) _

4, as a function of the upstream Mach number. We see thdts~0-215. We see that there is a modulation of the pertur-
this function is negative for some range of the final volume Pations due to the action of, at least, two different eigen-
which means that the DK mode can be excited there. Indeediodes. If we calculate the upper bound of E8f) for this

this is the case, as seen in Fig. 4. Regarding the other mode2S€, We getn=<1.23, which means that the factors
it can be seen that the quantity,~h is never negative for 1/[COSHA+2]69-a1(q+2j69], with j=2, do not have
this Hugoniot curve, and thus the second mode cannot becles. Thus, only one additional mode, besides the DK
excited. However, as has been discussed previously, w&0de, is possible for this Hugoniot.

could excite the additional modes at higher compressions. It
is clear that it would be convenient to start with an initial
state far from the liquefaction curve, in the ideal gas zone of As for the piston perturbation concerns, we have only
the fluid, and choose a final state, near the phase transformémposed that the normal velocity perturbations are zero. It
tion curve, without ever crossing th8=0 line. The next does not mean that every other quantity is zero, even asymp-
case we plot is a shock moving into a real gas wit=80  totically in time. That this is so is clear from the results of
and initial volumeQ;=35. The initial temperature is always Sec. lll, in which we have seen that the Laplace transform of
equal to the critical temperature. In Fig. 5, we plot the cor-the pressure fluctuations could show a number of poles when
responding parametehg—h, h,—h, andh,—hto search for evaluated at the piston. That is, there could be an asymptotic
the zones in the space of physical parameters in which themescillatory behavior for those perturbations. They are the re-
is the possibility of exciting the DK mode, the second mode sult of the interference of all the waves emitted by the shock
the piston mode, or all of them. As can be seen, the range gfownstream. For certain conditions, the piston becomes a
final volumes, and hence of upstream shock Mach numbersurface where those waves could interfere constructively and
in which the second mode is excited is smaller as comparethe amplitude would neither grow nor decrease in time. To
to the analogous interval for the DK mode. The shock Machconfirm these facts, we can see in Fig. 5 the parantgier
numbers necessary to excite the second eigenmode are, i as a function of the upstream Mach number. It is clear
fact, larger. According to these results, we should observéhat we will find pressure oscillations at the piston, at higher
both modes of shock oscillation together, for example at &ompressions than are necessary for the standard DK mode
final compression volum&;=1. In Fig. 6 we plot the pres- at the shock front. Correspondingly, a lesser compression is
sure perturbations at the shock front. The upstream Machequired than that which is necessary to excite the second
number isM;~4.59 and the downstream Mach number isshock eigenmode. In Fig. 7 we show the temporal evolution,

2. Pressure perturbations at the piston surface

0.1 - .
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FIG. 4. Parameteh.—hp as a function of the upstream Mach FIG. 6. Dimensionless pressure perturbation at the shock front.
number. The gas parameters avg=80, Q;=35, andQ;=1.
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er 1 1
o 15| SZE(W—V—\I). (49)
ag - . . : .
gg 05 The variablew is essentially the same as the variaplesed
_:g o by Fraley[10]. We must also choose a closed path that en-
82,5 circles all the singularities of the integrand in theplane.
g2 '1 We consider first the simplest situation studied in the previ-
s | ous subsection. Let us consider a corrugated shock moving
1.5 into an undisturbed van der Waals gas with dimensionless
2 ' ' : | heat capacity given byr;=30, initial volume Q;=3, and

o
-
n
w
IS

X/ final volumeQ;=1. We want to reproduce the results of Fig.
: 3 with the theoretical tools given by the preceding equations.
FIG. 7. Dimensionless pressure perturbation at the piston sur- The contour integral can be rewritten in theplane as
face (x=0), for the same gas parameters as in Fig. 6. 1 1 Wil dw
— @ SP(s)e’ds= —P SP(w)| —— et —
calculated with the series expansion given by &g, for a 2mi Jp 2mi Jp 2w w
shock moving into a real gas with a dimensionless specific (50)
heat o, =80, Q;=35, and final volumeQ;=1. The modula- L ) )
tion seen on the signal is due to the interference of the charLhe circuitI™ is the corresponding contour in thve plane.
acteristic oscillation at the piston with the transverse soundror the case studied in Fig. 3, the Laplace transform has two

waves that travel in the resting fluid with frequeriay [10]. ~ Poles ats= xisy, which correspond to two polesw, in the
w plane. There is also an essential singularity at the origin in

the w plane, due to the exponential term. The integration
C. Residues at the poles path reduces to two small circles of arbitrarily small radius
that enclose the polesw,, and a circle of radius unity that
surrounds the origin clockwise, due to the essential singular-
We want to compare the previous results with the analytiity there. Thus, after some manipulation, the functigi(r)
cal information that can be derived from the Laplace transcan be calculated:
forms calculated in Secs. Il and IV. As we know from the W2
theory of the Laplace transforf0,4€4, the shock pressure D) = eo(r) + % % 5PS(W)( + 1) e(rlz)(w—l/w)d_w
C

1. Single DK mode at the shock front

perturbations in the real time domain can be calculated with 2w w'
the following integral in the complex plane:

(51)

(1) = — SP(s)e%ds, 47 Wpere(; isa circulgr pa}th enclosing the.origin Clockwise, and
ops(r) 27 J i < “7 Py(r) is the contribution due to the simple poleinvg. To
calculate 5py, we must manage the terms that contain the

wherez is a real number chosen in such a way that all thef@Ctor coski—au(q). Itis useful to factorize it in terms of the
singularities of the integrand lie to the left of the linesRe Variablew in the form

=z As 6P is a Laplace transform, it vanishes for large val- (1-ay0

ues of its argument. Then, if we close the path of integration coshq- a4(Q) = ————(W—iwg) (W + iwp)

with a large semicircle to the left, the integrand approaches 2w(w? - 1)

zero at least as fast &R®" with Res<0 and the residue X(W=iZo)(W+ip), (52)

theorem can be used to calculate the integral in(Eg).[46)]. — )
That is, we choose a suitable contdirwhich closes the Where {o=yUge ™, with Ug=[-\1+4ayi(ay;~ a9 +ayo
vertical path of Eq(47) to the left, and formally write the —2a11l/(1-ai0). We write the final result for the pole con-

equation[46] tribution, after some long algebra, as
1 Peo(r) =g sinsyr, (53)
ﬁé 5Ps(s)e5’ds:J(residues at the polgs which gives a sinusoidal contribution as expected, since
r

Spy(r=0"=0. The quantitya, is given in the Appendix. The
o ) next step is to calculate the integral along the unit circle. By
+ jg (around essential singularitles  simple inspection in the expression 8@ in Eq. (19), it is
clear that retaining a large number of terms in the calculation
(48)  would be a difficult and not necessary task. This is due to the
fact that the Mach number in this case is near unity, and with
Instead of dealing with the variable it has proved more just the first term\; is accurate enough. Actually, & is
useful to work with the variablev, as suggested by Miller larger than unity, we could even approximateby the term
and Ahrens, which is defined ] ay(q)/[coshg—a4(q)] with negligible error in the final re-
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FIG. 8. Comparison of the exa¢tlash-dotted curyeand the FIG. 9. Comparison of the exatsmall empty circlesand the
asymptotic solutior(solid curve for the oscillations shown at the asymptotic solutior(solid curvg for the oscillations shown at the
shock surface in Fig. 3. shock surface in Fig. 7.

sults. This is what we do next, and later on compare with thev plane. We havavzzv’?z: v“?oe‘zas, with T, given by Eq.
exact result given by the series of Bessel functions. Making34). Analogously to the situation found for the first DK
the substitutionv=€'® and after using symmetry properties eigenmode, the absolute value of the previous pole is larger
of the trigonometric functions involved, the integral aroundthan unity. In addition, there are two additional zeros of the

the contourC is reduced to factor cosliq+26,) — a4(g+265), which have absolute values
less than unity and which we call&. They correspond to a

1 SP (W)(Wz_”>e(r/2)(w—1/w)d_w negativea value, which is related to the negative determina-

2miJo o ° 2w w tion of the square root in terms likes?+ 1, and are therefore

- o . 5 excluded as poles of our Laplace function. The main differ-

_ 1 2 cos(1 ~Wolp)(sin 26+ W5 + &) ence from the last section is that we have now two additional
2m(1-ay0) ), (L+ 2032+ WH)(1+2/5cos 2p+ {5  terms in the residue calculation. The residues associated with

. . the poles is, are calculated in the same way as before. To

Xsin(r sin ¢)d¢. (54) deal with the second poles, it is more convenient to define a

In F|g 8, we compare the solution given by the series offew aUX”iary function that factors out the denominator

Bessel functions used in the last subsection and the resulfd[costa+26y) - a;(q+26)]. After some considerable alge-

predicted by Eqe53) and(54). We see that the agreement is bra, we get

very good, except during the transient stage when the shock

is still near the piston surface. As the effect of the sound Ps(r) = a, sinsyr, (55)

wave reverberation is important when the shock is still near

the piston, we would need at least the complete expressioffhere the quantitya, is given in the Appendix. The total

for A, to take into account these early time reflections. Any-shock front pressure perturbation will be given by a sum of

way, due to the small valu@ear unity of the Mach number,  the form

the difference from the exact solution is quite small, after the L

shock separates from the wall some wavelengths. The nu- PR o L

merical values of the complex poles predicted by our equa- Ps(r) = OPg(r) + SPsa(r) + o i OPs(w)

tions arewy~1.073 andsy=1.0025. To calculate the tempo- 5

ral frequency associated with the polaésgtwve must go from X(W + 1) Q(r/2)(w-14) dw (56)

ther variable back to thé variable. This amounts to dividing 2w w’

by coshés~ 1.454. We thus obtain the temporal frequency of

the oscillations in units okc;: wg=Sy/coshfs=0.68%c;. We  where the integral in the right hand side is the contribution of

multiply it by the factor 2r/ 35 to get the spatial frequency the essential singularity at the origin and gives rise to decay-

2mwol Bs~5.965. This gives us a spatial peri@itie horizon-  ing oscillations superposed on the permanent, stable oscilla-

tal axis is the shock-piston distance divided by the perturbations given by the simple polesisg and 4is,.

tion wavelength equal to B¢/ wy=1.053, which coincides We show the final result in Fig. 9. It is noted that only the

very well with the result shown there. asymptotic contribution given by the oscillatory terms has

been included. We see that it introduces only a small differ-

ence during the transient stage, when shock and piston are
We increase now the Mach number and the specific heaguite close(xs~\). The numerical values for this case are

to compare with the results presented in Fig. 8. We consideng=1.714,5,=1.149,w,=1.108, ands,=1.005. We clearly

a real gas witho;=80, Q;=30, andQ;=1. We have now a see the modulation due to the simultaneous excitation of both

second pair of complex conjugated imaginary poles,tas  frequencies. A natural question is to ask whether it is pos-

given by Eq.(33). These poles in the plane correspond to sible to have an excitation in which the amplitude of the

an equivalent set of two complex conjugate poles.tin the  standard DK mode could be smaller compared to the ampli-

2. First and second modes at the shock front
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considerably and leave space to the dominant piston eigen-
mode. It is interesting to make here a brief digression about
the mathematical origin of the modulation seen in Fig. 7 or
10. Its nature is quite different from the modulation seen on
the shock perturbations in Fig. 6 or 9. In the case of the
shock perturbations, we have the excitation of two simulta-
neous eigenfrequencies which correspond to the tefpgs

« sinsgr and dp,« sins,r in Eg. (56). In the piston case,
studied in Figs. 9 and 12, we have only one eigenfrequency,
given by the conjugated polesw, or equivalently is;. If

¢ we look more closely at the expression yf(q), we would

see that there is a term cogke Vs°+1 in the denominator,
which is not present in the expression #®(q), in Eq.(19).

We could always formally calculate the inverse Laplace
transform of the new functioaY(q)=coshqésP;(q) from Eq.

6). It is clear that this new functiodY would give rise to

e same poles a8P; but different residues. In fact, after
some tedious algebra, it can be seen that the inverse Laplace
transform of 8Y is proportional to a function of the form

D. Pressure oscillations at the piston coss, 7, which is different from the sine behavior associated
. . with the poles ofsPs and 5P;. But we are interested in the
As has been shown in Eqs6) and(37), the piston pres- inverse ofdY(q)/coshq= 8Y(s)/$*+ 1. It is then immediate

sure Laplace transform also satisfies a functional equatio . - .
from which an exact particular solution can be found. Ther%hat part of the asymptotic response3 would be given by

imaginary poles of that solution would correspond to stabl? convolution of cos; 7 with Jo(7), whereJ, is the ordinary

oscillation modes at the piston surface. It is not difficult to Bessel functlon of_zero ordef40,4§. This explains the
understand that the poles are given by the zeros of terms ggodulation at the piston.

the form cospg+(2n+1)6s]-ay[q+(2n+1)6s]. To show a
specific case, we study the same real gas as in the previous
section(Fig. 9) and the final volume is noW@;=1, such that

the first eigenmode at the piston is excited. The poles are at A. Comparison with previous works
+is;, with s;=1/2(w; +1/w;) wherew,; =Tye %. The calcu-

lati fh i tth : I tirelv simil It will be interesting to review former works that have
ations ot the residue at the previous pole are entirely Simiial, o, seq the Laplace transform technique. We want to un-

to the algebraic steps dong fo_r the first DK eigenmode at th'E‘ierstand where the previous works separate from our conclu-
shock. The functionspio(7) is given by sions and where they agree. The Laplace transform approach
SPio(7) =a; sins, 7, (57) has been .used initially by Rober[@O] to study the propaga-
tion of an isolated shock into an ideal gas. Recently, the same
where the quantity, is also given in the Appendix. In Fig. approach has been followed and mistakes in the original
10 we show the results given by the series of Bessel funowork of Roberts have been correctpt?]. In it, the author
tions and compare them with the functiaipo(7) for the tries to study the instability problem for a shock moving into
same situation studied in Fig. 7. We see that the perturbatioa fluid with arbitrary equation of state. The idea used is the
is modulated by another signal that oscillates at the fresame as the one used here, to look for the poles of the
quencykc;. This is the natural frequency of the transverselLaplace transform and search for the conditions under which
sound waves that exist near the piston and travel almost patmstable behavior could be observed. Zaidel’ also used the
allel to it, as discussed by Fral¢g0]. This modulation will  Laplace transform to solve the perturbation problem ahead of
later decrease in amplitude, and the asymptotic perturbatioa corrugated piston, and has been the first to propose, to our
will be the stable oscillation given by the contributidp;,  knowledge, the Lorentz transformation that leads to (By.
above. As the shock is rather strong in this case, the effect afater on, the same approach was used to study the reflection
the transverse sound waves is not negligible. This contribuef a planar shock from a corrugated wall and compare the
tion comes from the integral along the unit circle in the com-theoretical predictions with experimental resy§]. Much
plexw plane and takes longer to attenuate. For this case, wiater, in the context of the Richtmyer-Meshkov instability,
have w;=1.378 ands;=1.052. The spatial periogwhen Fraley(after Zaidel) has provided the scientific community
measuring the perturbations as a functiorxgih) is Bs/s;  with a rigorous, complete, and exact analytical solution for
~0.214. On the other hand, the period of oscillation of thethe perturbation field evolving between two shocks separated
modulating envelope would be approximately given byby a corrugated contact surface, in ideal gases. His approach,
B/ (s;—1) =4.146 which coincides quite well with the value however, dealing with the same physics as here, managed the
directly measured in Fig. 12 below. Thus, it would take atfluid equations in the physical space of thet variables,
least two or perhaps more of such time intervals in order fomaking a Laplace transformation in time, instead of working
the modulation produced by the transverse waves to decayith Zaidel's coordinates, 6. We will later see that his ap-

perturbations
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FIG. 10. Comparison of the exa¢tashed curveand the
asymptotic solutior(solid curve for the oscillations shown at the
piston surface in Fig. 9.

tude of the second mode. At least for the zone of the space (%
parameters explored here, it does not seem feasible.

V. DISCUSSION
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proach and ours are entirely equivalent, and therefore, our £ .

conclusions could also be obtained following his calcula- —=S"'ASu (60)
tions. Unfortunately, he restricted his analysis only to ideal

gases, and did not show any quantitative result regarding @he last equation can be formally solved, to obtain
stability criterion like Eq.(2) or Eq.(30). Some years later, - .

Miller and Ahrens[5] applied and improved Zaidel's work U= S (SUyeo). (61)

with a more or less similar formfilism-as the one used in th|s|'he previous equation gives us the three perturbation quan-
work, to address the effect of viscosity on the shock perturtities in terms of the three eigenvalues of the problem and the
bation evolution. It is also interesting to briefly review this phoundary conditions at the shock. However, since their third
work, as the authors have considered a perturbed shock mogigenvalue is positive, the exponen&# will diverge in the

ing into an inviscid fluid too. Nevertheless, they used anjmit x—c. To circumvent this apparent difficulty, the au-
approximate boundary condition at the piston surfacethors assume that the corresponding eigenvector should van-
namely, that the eigenmodes should vanish there, on the agh_ in order to keep a bounded solution in the whole space
sumption that for large times, shock and piston would beyehind the shockx>0 means behind the shock in their no-
separated far enough and any causal influence between thegiion). This approximate boundary condition is somewhat
could be safely neglected. It is interesting to notice that in squivalent to “forgeting” the piston in the compressed fluid
doing, they do not get a functional equation for their Laplaceand not considering any reflecting surface at all. After adopt-
transform and therefore they can only predict the standarghg this approximation, they managed to obtain a mathemati-
DK mode. On the contrary, the work done by Fraley doesa| solution for the shock front ripple. In analyzing the poles
include consistent boundary conditions at both the piston angf that solution, they obtain the DK criterion for the emission
the shock front and obtains a functional equation completelyf undamped sound wavdtheir Eq. (27)]. That is, when
equivalent to our Eq(15). We start by discussing very forcing the piston behind the shock to completely decouple
bl’leﬂy the derivations of Miller and Ahrens for their inviscid from the ShOCk, we are erasing from the prob'em the sound

case. After that, we continue with Fraley’s work. wave reverberations that take place between the shock and
the piston aftet=0". In other words, we are excluding from
1. Isolated shock (Miller and Ahrens’ work, Ref. [5]) the problem, from the very beginning, the ingredient that

excites the rest of the spectrum. Only the DK mode will be
retained, because it actually does not need any sound wave
coming from behind.

According to Ref.[5], we could take the Laplace trans-
form of the fluid equations and write them in the following
compact form:

2. Shock interacting with a contact surface

N (Fraley’s work, Ref. [10])

&:Au, (58) In connection with the work of Miller and Ahrens, we

discuss now the work of Fraley, which makes essentially the

whereu is a three-component vector defined essentially byS@me mathematical treatment: he takes the temporal Laplace
d=(8u,dv,8P), with éu the Laplace transform of the per- transform of the equations of motion and integrates them in

turbed normal velocitysu that of the tangential direction, SPace. He obtains the sound pressure meelesentially, the

and 8P that of the pressure perturbations. Their dimensionM0des associated with the same eigenvahigand A; of

less quantities are defined with different scaling factors, soiller "’r‘]nd Ah_reg_gﬁand statkiJonary vorrt]ex and entroEy rgod_zs
our comparison remains qualitative. In addition, they use 419l- The main difference between these two works, besides

coordinate frame moving with the shock. The tenadis 3 notation, is that Fraley did not exclude the piston from the
X 3 matrix whose components can be foimd in RS Our mathematical formulation. He used the correct boundary
aim is only to make a simple discussion that points out thé:ondmon regarding the normal velocity component there and

differences in their results as compared with ours, and try t4€ continuity of pressuren case there were another fluid to

understand the reasons for that difference. They propose tl\%e I;z;‘(t of theblpistoln surfgc_e, ashinr;[hg stalzldard Richtmyefr-
general solution of the formi=(,.,e", where it is remem- Meshkov problem In so doing, he had to keep account o

bered thax=0 is the shock position in their frame of refer- the Doppler shift at the shock fronts, because at some point
ence. The quantity is a possible eigenvalue for the differ- in the calculations we must couple the shock oscillations
entiai equations system of Eq58). After inserting the with the fluctuations that arise in the resting fluid near the

previous ansatz in the equations, the three eigenvalud¥Ston. This mathematical complicatio@pparent in the

(A1,N2,N3), and their associated eigenvectors can be opvalue of the eigenvaluex, and A of Ref. [S]) would be
tained. The matrixA can then be factorized as always present, and it is responsible for complicating the
' mathematical structure of the equations in such a way that

1 the Laplace transform would be the solution of a functional
A=S7AS, (59 equation. If the physics included in Fraley’s work is the same
as ours, then we should also reobtain our &%) with Fra-
whereSis a matrix formed by the eigenvectors afds the ley’s equations. This is our next task in the following lines.
diagonal matrix formed with the eigenvalues. The originalTo keep the notation as simple as possible, we try to follow
Eq. (58) can then be recast as Fraley’s nomenclature, except when it is no longer possible
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to do so. Let us begin with the mathematical structure of the cosheé.
A s
modes found in Ref[10]. The pressure modes are written OP¢(F) = a(q - O)coshq - 6 coshq +b(q+ 6y
as[10]
coshé,
R o xcosHq+ 69— :
8p(s,x) = a(s)exp(xVs? + 1) + b(s)exp(— x\s* + 1), coshq
(62) _ fla= 09+ faa+ 69 (66
coshq

from which the corresponding perturbations in nori@l)  which coincides with our solution, later shown in Eg0).

and tangentialdv) velocities can be derived. There is a third To show the complete equivalence between Fraley’s calcula-
mode that accounts for the generation of vorticity and antions and ours, we have to go to the boundary conditions at
other for the generation of entropy at the corrugated shockhe shock front[37] [namely, his Eqs(14) and (15)] and

As discussed by Fraley, the first mofla(s)exp(xys’>+1)]  reobtain our Eq(15). When manipulating his shock bound-
consists of waves escaping from the shock into the comary conditions, in the same way as Richtmyer did, to get a
pressed fluid. The other mogle(s)exp(— —x\+1) )] stands for differential boundary condition for the pressure fluctuations,
the sound waves that hit the shock from behind. Furtherwe arrive at

more, to deal with the moving shock front, the transform of .

the pressure at the shock must be rewritten by using a com- LI~ — (Bs* E))cosha— )7 — ExA,]f(q - 6)

mon Laplace variable which Fraley calts but which we +[72 - (Bs+ Epcoshq+ 6)F — E,A If(q+ 69
prefer to callf in order not to confuse it with our Lorentz

coordinate in Eq(6). To understand the origin of the com- =E, O%_ (67)
mon variable, it is better to write the inverse Laplace trans- coshé;

f f f th d t the sh : .
orm of one of the modes at the shold)] To get the last equation, we have made use of the only ac-

ceptable boundary condition at the rigid piston, nam#éjy,

Z+i°°d Zi1 =f,=f, because the normal acceleration is zero at the wall.
e Sa(sp)expls T+ fsrVs” + 1) After some additional lengthy algebra, which we prefer not
, to show, it is straightforward to see that the previous equa-
Z+|© . . . . .
B . ds, X tion is the same functional equation as Etp), when rewrit-
‘L_iw dra(SZ)E exp(f), 63 ten in terms of our functiorF=F,=F, Some immediate

conclusions can be drawn from this result. It is clear that
with either Fraley’'s approach or the model presented here,
and analogously with the other mobés,). We see that the we would get the same spectrum for the perturbed shock and
frequencies of oscillation of the modess) andb(s) at the  the fluctuations that evolve in the downstream fluid. That is,
shock front are Doppler shifted. We also recognize the factowe would reobtain the same oscillation patterns at the shock
V2+1, which enters naturally into the problem. Its origin and at the piston. He continued his analysis further and dis-
resides in the transverse partial derivati#ip/dy? in the  cussed the question of stability of the shock traveling in ideal

wave equatior{Eq (6)]. That is, the term\‘52+l and the dases in the context of the Richtmyer—Meshkov |nstab|I|ty
branch points associated with(éts= +i) are the mathemati- and obtained well known resulf47,48: temporal decay like

cal manifestation of the existence of a lateral flow along ther "%, etc. We will not review those issues here. We want to
transverse directiog. empha5|ze the fact that, when considering a reflecting sur-

The Laplace variables,, s;, andf are connected by face behind the shock, a term that describes the reflected

waves must be included and a functional equation for the

A — Laplace transform of the pressure appears naturally. As can
F=s+Bss+1, be deduced from Eq$62)—(67) the nature of the functional

equation is the Doppler shift at the shock front and the exis-

tence of a reflecting surface behind it. Furthermore, if we

f=s - 5SV5§+ 1. (64) want to close the problem and solve it exactly, we need an
] ) ] ] ] additional condition on eithef,, or f,, or both functions.

Let us defines=sinhq, s,=sinhq,, ands,=sinha;. Itis  Thatis, we should say something about either the left facing,

easy to obtain, after some algebra, the right facing, or both types of waves. In the case of a rigid
piston, we ask for the vanishing of the normal acceleration
_sinh(gy- 69 sinh(g, + 6y there.. On_ the contrary, if the piston were a free surface, a
r= = . (65  situation in which the pressure perturbations would be zero
coshég coshég

there all the timgbut not the normal velocity perturbations;
this is the symmetrical Riemann problem discussed by Ve-
That is,q;=0,+26,. Therefore, the Laplace transform of the likovich [41]), we would requiref;=-f,=f [9,36,37,41 On
pressure perturbations at the shock, according to his notatiothe other hand, if the shock were traveling isolated, without
is interacting with a wall from behind, a case also discussed by
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Fraley [10] and used as a paradigm by many others[1,6,7. However, the more general criterion for the possible
[1,5-7,20-24,26-33,47 i8ve should make the second Fra- excitation of the completéfinite) spectrum is lost. We could
ley modeb(s) =0, which is consistent with makir,=0in  reconcile these two results thanks to the conclusions of the
our notation. This boundary condition behind the shockmodel developed here. In fact, let us consider, for example
erases completely the right facing waves that hit the shock,e gerivation of the dispersion relation as done in R28).
from behind. As will be clear from the discussion in the next,, i “the origin of coordinates is taken at the shock itself.
section, with this assumption, no at_jdmonal modes o.ther tharf‘hen, the piston moves to the left with a finite velocity and
the DK mode would be excited. Going back to the Miller ands oils the use of the separation of variables. However
Ahrens work, it is clear that they would also have been able P P S : » We
to get the complete spectrum if they had retained the reﬂectc-(.)UId formally suggest a S.ep?“.ated SOIUt'OT '!ke@“f the
ing surface behind the shock, in much the same way as Fr iston boundary were at |_nf|n|ty: In fact, .Slnce It tqkes a
ley did to deal with the shock and piston boundary condi- inite t|m¢ for the perturbation to mte_ract with the medmm at
tions. As they were interested in other phenomena inside th@ [arge distance from the shock, we impose the physical con-
viscous fluid into which the shock was propagating, theyStraint on the perturbation quantities that they die out at suf-
considered a good starting point to neglect the piston boundiciently large distances. Mathematically, this is equivalent to
ary, in order to simplify the discussion at the shock. a requirement on theeparation of variables solutiothat it
Before concluding this paragraph, we reconsider the norbe bounded ag’ — ", as extracted from Re{26]. Assum-
mal mode approach used to derive the classical DK criterioning the piston very far away is equivalent to excluding from
As we know, to solve a partial differential equation by sepa-the problem the physics that occurs between shock and pis-
ration of variables, some conditions must hold not only forton fromt=0* onward, with the illusion that we would pick
the equation itself but also for the boundaries. The waveut the essential properties of the asymptotic behavior, just
equation is known to be separable, and this justifies at leastecause we are studying the system in the limitoc. This
the ansatz done in Eq4). But the boundaries should be would be the correct form of dealing with the asymptotic
rectangularin the system of coordinates chose49-51.  evolution if the system were capable of “forgetting” some-
That is, the boundary conditions should be known at fixechow the initial conditions quite soon, that is, if the problem
values of the coordinates, in order to define Sturm-Liouvillewere self-similai{2], which is certainly not the case here. It
problems in at least one of them, and get orthonormal sets a6 also not true in more complex situations like the
functions. After a linear superposition, the solution to theRichtmyer-Meshkov problem, in which the early time inter-
problem can be found by application of the boundary andaction between shock and contact surface decides the value
initial conditions[49-57]. But, for the method to work prop- of the instability rate of growth at later timd9,10,37. As
erly, the boundaries in the or y directions should be kept has been shown in previous sections, the acoustic emission
constant in timeeither a constant real number, or just takenmodes exist together with the decaying perturbations from
at infinity). In the case of the shock problem discussed here,=0*. Therefore, letting the piston surface go very far to the
in the reference frame used, the shock surface is movindeft and making the perturbations there equal to zero is the
x{(t)=ug. This fact precludes the use of separation of vari-same as erasing the right facing waves reflected by the piston
ables to solve the problem in Cartesian coordinates, if wend considering an isolated shock moving to the right. In this
want to consider the piston and the shock together. To avoidpproximation, the solution will display only the standard
this complication, we have used a Lorentz transformatioDK mode, but not the rest of the possible frequencies. We
[see, for example, E@6)]. In the new system of coordinates, note that setting(gistoneoo is the only way to justify the use
the domain of integration is the union of “squarelike” inter- of a separable solution. In conclusion, the usual approach
vals of the form Gsr < and 0O< #<6,. In this way, we developed by previous authors when studying the shock sta-
arrived at well known equations: the Bessel equation for théility problem only gives a correct answer for an isolated
r variable, with a complete system of solutions, and theshock front which does not interact with a reflecting bound-
spring equation in the variablé for which exponential so- ary behind it. The more general problem of a shock with a
lutions can be derived. After superposing both sets of funcreflecting piston surface shows a wider spectrum, which de-
tions, we calculated the coefficients of the expansion by appends on the EOS of the fluid.
plying the boundary and initial conditions both at the piston We should note that we could also find zones in which the
and at the shock. The solution is presented in the form of @hock exhibited another type of growth, maybe exponential.
series like Eq(7). It is clear that nonlocality in space and However, if we use the solution provided by HG9), we
time is a characteristic of the solution that is unfortunatelymust note that only the zones wilth<1—2,8§ are allowed to
necessary to explain the subtleties of the perturbation fielthe explored. Therefore, we could study zones in whigh
between both surfacdsee, for example, the works of Rob- —1, in order to search for exponentially growing perturba-
erts[20] or Bates[47] to see the causal influence betweentions[1,26]. Of course, the zones with> 1+ 23 could also
shock and piston, propagated along characteristic rays in tHee explored with the same tools as here, but we need to
X,t spacé. The solution indicated in Eq7) has all the phys- include the solution to the homogeneous equation of Eq.
ics, once the coefficient®, are calculated. What happens (15), which has not been obtained yet for the 2D problem.
then, with a perturbation of the form suggested by &)?  Furthermore, as our analysis includes the piston, it is quite
We know that by assuming this type of solution in the possible that an even wider spectrum than that predicted by
Rankine-Hugoniot conditions, the stability condition for Egs.(68) and(69) could be found. This task is left for future
spontaneous acoustic emissi@y. (2)] is correctly obtained work.

046303-15



J. G. WOUCHUK AND J. LOPEZ CAVADA PHYSICAL REVIEW E70, 046303(2004)

B. Classical DK dispersion relation speed. This result will be rigorously deduced in the next

section when discussing the full spectrum. In consequence,
as far as the dynamics of the standard DK mode is con-
gerned, it is as if the piston did not exist. Once emitted by the
shock, that mode will never interact with the shock after

reflection at the piston boundary. Hence, it is easy to under-
stand why the standard DK dispersion relation for the modes
f an isolated shock agrees with our first pole at the shock

The approach followed in former works, since that of
D’yakov and Kontorovich, has been the use ofreormal
mode separable solution for the perturbed quantities in th
space behind the shog¢k,5-7,21-3B In doing so, the pos-
sibility of additional longitudinal wave numbetalong thex
direction) must be taken into account. As we have seen in th
last sections, the exact solution to the perturbed quantitie , ) i

ound in this work. As will be shown later on, when the

cannot be written with separatedandt variables. The main ) , X i
reason is that we have to deal with the two types of sound€cond mode is excited at the shock surface, the first mode is
emitted at such an angle that it will definitely hit the shock

waves: right and left facing. Even though we know that the

DK mode is correctly predicted even when the approximatd/©M Pehind. In this way, the second mode appears because

ansatz provided by a solution of the form édkgp+ik,y the first(standard DK m.oqjatarts to interact with the shock,
+wt) is used for the perturbation quantities. Another knownafter reflectpn at the piston. .

approach to the shock stability problem has been to study the Let us brldeﬂy Si? h?]W ;:an we gket ;Ehe |solatgd| Sthk
reflection of sound waves impinging on the shock front fromaCOUStIC mode within the ramework:of our model. The
behind[1,21—23. In this way, the coefficient of reflection of shock front pressure perturbations can always be rewritten as
the sound waves at the shock surface can be calculated frot:%A"Sﬂ

the linearized Rankine-Hugoniot equations. The conditions Fi(q- 69 + Fo(q+ 6

for spontaneous acoustic emission are obtained by requiring oP«(q) = cosh : (70)

that the reflection coefficient becomes infinite. This require- q

ment expresses the fact that the shock reflects sound wavegere, as can be seen from RgI0] and the review pre-

in the absence of waves incident 01j2@,23. This has been sented in the last subsection, the functiefiq—6,) stands
another approach to obtaining E@). We have also obtained for the sound waves that leave the shock surface into the
it here with a different formalism, by looking at the poles of compressed fluid. The second tefy(q+ 6,) represents the
the complete Laplace transform. The interesting task is unwaves that hit the shock from behif#io]. Therefore, in the
derstanding how to reconcile these approacheswlle¢ the  absence of a true piston that can reflect sound waves, as in
oscillation frequency of the excited mode in the shock movthe example discussed by Bates and Montgonj&ty we

ing frame of reference. The fluid velocity that escapes downmust require thaF,=0 in the downstream fluid. From the
stream from the shock is in the shock front system. There- poundary conditions at the shock and using the results of
fore, the frequencies measured at the shock and at the pist®ef. [37], =6, we get a simple analytical solution

will not be the same due to the Doppler shiff. Let w, be

the frequency of the oscillations as measured in a system
fixed to the piston surface. Then both frequencies are con-
nected by[1,26]

a,(q)

SP{(g) = —2+—
@ coshq - a;

(72)
It is clear that with this boundary conditi@gno piston behind
wy |2 o ko \? k)z( the shocl, the solution is simpler than the one shown in Eqg.
k_cf = k_cf B k_ﬁs =1 +k_§' (68) (19). We also see that the Laplace transform given by Eq.
Y Y Y (71) shows only one pole, if the conditions given by E2)
In addition, we defind’\(:kxlky andQ:w/(kycf)_ The usual are satisfied. That is, for an isolated shock, which is slightly
procedure is to introduce E¢f) into the linearized Rankine- Perturbed in shape because of some infinitesimal shock tube

Hugoniot conditions and obtain the dispersion relationship invidth constriction, as in Bates and Montgomé¢¥y, only the
the form[7,26] DK mode would be excited. Because there is no piston to

02 02 reflec():t th% sounld wa\t/]es in th(?c shpace behind, trrlle functir?n
T oy — o0 Pl ) pP1is- b F,=0, and we lose the rest of the spectrum. That is, the
Dk, &) = Zﬂpf(l ¥ g) (1 ¥ ¢ g)(Q AL +h) sound waves that reverberate between shock and piston are
_ necessary to excite the additional eigenmodes. Because the
=0, (69 shock shape is corrugated, the shock will always start to
and solve the last two equations together. It can be easilgscillate at its highest natural eigenfrequency, as given by the
verified numerically that the first pole found in this work DK prediction, when Eq(2) is satisfied. However, in order
[Eq. (25)], which corresponds to the first acoustic emissionto excite the other frequencies, we need the t€xf - 6y).
mode, is a solution to the above dispersion relationshipOtherwise, we would not be able to construct the functional
However, the additional poles do not satisfy it. The reason igquation[Eq. (15)], or its solution given by Eq19), and get
very simple and has to do with the kinematics of the inter-the other eigenmodes. In other words(q-6,) is the term
action between the shock and the piston. As will be showrthat keeps account of the waves that face toward the shock
later on, the sound wave emitted at the DK frequency, isand it is a necessary ingredient to put the right facing sound
reflected at the piston surface with such an angle that it carwaves in our system. This means that those waves should
not get back to the shock. That is, the projection of its ve-have been generated somewhere behind, at the piston sur-
locity along the normal to the shock is less than the shoclace. It is in this sense that we say that the left reflecting
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boundary is necessary to excite the entire spectrum. In addbehind once they are reflected or generated at the piston? If
tion, the eigenmodefrepresented by functions liképy(r)  the piston is responsible for the appearance of the additional
for the DK mode, ordp,(r) for the second excited mofle spectrum of eigenfrequencies, there should be some specific
exist fromt=0*. They are generated together with the rest ofinteraction between both surfaces. The task consists in evalu-
the perturbations once the corrugated shock has been formegting the wave number vectd;:(kx,ky) of each of the

so it could be misleading to think of them as only anmodes, in the resting fluid. In evaluating the angle it forms
asymptotic response of the shock front. After the shock hagith the normal axis we will be able to decide whether that
traveled some wavelengths away, they will be the only reray will actually hit the shock or not. It is convenient to use
maining perturbations, because the contribution from thehe results of Fraley10], actually the mode amplitudess)
transverse and normal incidence sound wajrepresented andb(s) shown in Eq.(62). We will analyze the values al-

by the unit circle integral in Eq(54), for examplg WOU|d. . lowed to the projectiork, of IZanng thex axis of the SAE
decay. Therefore, the spectrum, if the necessary conditions he right faci | .
for its existence is satisfied, is fully excited fram0*. The Mmodes. The right facing sound ray, evaluated at any position

first eigenmode exists without the need of having any soun@< X5 has_ a Lgplace_ amplitude given fyee Eq.(62) and
. . . ; e following discussion therejn
wave coming from behind, because we got it eveR,if0.
On the contrary, the second eigenmode exists beckyse b(sf)exp(sfr—kxxs’3$+ 1). (73
#0, thanks to the reflecting surface downstregin?5,33. o ]
We recall here that the possibility of including a reflecting e prefer to distinguish here between the Laplace variable
surface behind the shock has been taken into account for tt#$€d by Fraleyindicated bys;) and ourswhich we simply
1D problem, by Fowles and Swan in RéR5]. In it, the Nhames). It is clear thatlk,/=k|ys{+1|. In addition, we can
authors considered 1D perturbations in pressure that traveldtgfineg, such thas;=sinhg;. Then, thanks to Eq¢64) and
along the characteristics, were reflected at the shock, arl@9), itis easy to ges;=sinf(q- 6s), wheres=sinhg. There-
traveled back to the piston, to continue the reverberation profore, w"Sf2+1:COqu— 6s), and we obtain
cess. It was shown, that depending on the EOS of the fluid, _ > S
the shock front perturbations could either decrease, remain Ky = — COShfs\S? + 1 +ssin 6s=sinn— a + 6y, (74)
stable, or grow in time[25]. To sum up, we see that the where use has been made of K§2). We easily deduce,
excitation of these additional frequencies is a consequence ektrapolating from Eqg24) and(31), that the angle formed
the reverberation of the sound waves that bounce betweesy the sound ray associated with the first acoustic emission
the shock and piston. This process starts very early in timenode with the horizontal axis is given by
when shock and piston are very near each other=0") and _ .
lots of reflections between piston and shock are taking place o = arctanl/sink(- ap + 6)]. (79)
[12,47. As discussed by Richtmygn?], the effect of all  The angle formed by the second shock mode is therefore
those early time reverberatioriat t=0") is to equalize the given by
pressure between shock and piston, and make the total pres- :
sure perturbation nearly equal to zero initially. However, ¢, = arctanl/sint(— aq + 36y |. (76)
those initial reflections are also responsible for “exciting” the Analogously, for the first piston mode, we get, extrapolating
internal modes of the shock front in such a way that, if somé&rom Eq. (39),
of the inequalities in Eq930) are satisfied, the shock starts .
to oscillate simultaneously with the corresponding spectrum, ¢, = arctanl/sint{ap - 26)]. 77
as has been shown in Flg 9. In the next section we will ShOVA genera] formula for h|gher order modes is easy to deduce
how these modes couple the shock and piston surfaces. from the above results. It is interesting to see how these
angles behave as a function of the incident shock Mach num-
C. Shock-piston coupling ber for the SAE situations studied in this work. The study of
ahe angles of reflection at the piston will allow us to under-
stand which of the modes actually succeed in coupling the
piston and the shock front. To this end, we plot in Fig. 11 the
limiting angle given by arccog, [see Eq.(72) and the fol-
lowing discussioly and the angle of reflection of the first
shock mode as given by E¢/5). We have used the van der
Waals gas studied in Fig. @vhich corresponds to a dimen-
sionless initial volumeQ;=3 and a dimensionless specific
heato;=30, as first studied in Ref7]). The horizontal axis
ToBBs COS is the incident shock Mach number and the curves start and
= m- (72 end at those values between which there is acoustic emission
at the shock front. We see that the angle of the sound ray lies
It is clear that the encounter is possible only if ebs B, as  outside the region of shock-piston influence, because the
was also discussed for the first time in REZ3]. sound ray forms an anglé, for which cos¢,< Bs. For this
A natural question to ask is the following: Do the modescase, the shock emission mode does not interact with the
found in the previous sections actually hit the shock fromshock after reflection at the piston and this mode satisfies the

To start the discussion, let us follow a sound ray, reflecte
at the piston at some instant of time=7,. It has a wave
vector (ky,k,) wherek, is the original perturbation wave
number at the piston, arlg is the longitudinal wave number
associated with that mode. This vector forms an agglath
the axis normal to the piston. It is not difficult to see that the
time 7, of encounter of the sound wave front with the shock
front is given by

1
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reflectlon angle, at the piston surface,
of the shock acoustic mode (deg)

FIG. 11. Limiting angle curve and reflection angle of the first
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standard DK dispersion relationship, as expected. Let us FIG. 13. Limiting angle curve, reflection angle of the first and

change the gas parameter and the initial volumeQ, such

second shock oscillation modes at the piston, and first piston mode,

that it is now possible to excite the first piston mode, but nofor ¢1=80 andQ,=35.

the second shock mode. In Fig. 12 we show the angles of the

rays associated with the first shock and piston modes, tegxcite the acoustic modes. Let us concentrate first on the
gether with the corresponding limiting angle curve, for a vancurve representingy (the angle of the first shock mode yay

der Waals gas withr;=30 and Q,=25. This case corre-

It starts increasing and soon reaches the vati2 at the

sponds to stronger shocks than in the previous case. Thint C. Beyond that point, increasing the shock Mach num-
minimum and maximum Mach numbers correspond to théer further makes the angle greater than 90°. This means that
zone of the space of parameters inside which it is possible tat that point the role played by the Fraley modgs) and

le, at the rlston surface, of the
on acoustic emisslon modes (deg)

.

reflection an
shock and pis

90—
85—

[ 1% shock mode
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— (imiting angle
= =1% shock mode
""" 1% piston mode

b(s) is interchanged. That is, in the curved segmeb it is

the Fraley modea(s) which is now transporting the informa-
tion from the piston to the shock. Anyway, independently of
this detail, the discussion concerning the angle of interaction
remains the same, as far as the coupling between both sur-
faces is concerned. The segm@&i shows a minimum but
the physical conditions are such that this minimum does not
cross the limiting angle curve. Therefore, the first shock
mode does not reach the shock from behind in this situation.
The curve continues frorD to the pointB where it termi-
nates. In between, at the poiit which has the same Mach
number as the poinC, the piston starts emitting its own
mode. The angle, formed by this ray behaves in a similar
way as¢, did in Fig. 11. It stays always above the limiting
curve, which also means that this sound wave does not reach
the shock front from behind. We now change the gas param-
eters t00,=80 and Q;=35 and study the corresponding
angles in Fig. 13. The limiting angle curve is the solid line
AB. As before, we see that all the emission modeisher
shock or piston modegsstart and end on the limiting curve
AB. Let us concentrate first, as before, on the curve associ-
ated with the first shock mode. It starts increasingAat

FIG. 12. Limiting angle curve, reflection angle of the first shock reaches the value/2 at the pointC, and starts decreasing.

oscillation mode at the piston, and first piston modedfpr 30 and
Q1:25.

The behavior in the curved segmedb represents the role
interchange between thes) and b(s) modes, as discussed
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before. The point<C and E have the same Mach number. show a corresponding steady, rotational, and solenoidal ve-
Beyond the point, the piston also starts emitting its own locity field. The fact that the sonic perturbations decay to
mode. The curve associated with the first shock mode dezero when the fronts have traveled a distance several times
creases and goes below the limiting angle curve. This mearife corrugation wavelength ensures the asymptotic incom-
that between the pointsandJ the piston succeeds in cou- Pressibility of the velocity field in both fluids, independently
pling piston and shock using the first shock mode. That isOf the incident shock intensit{36]. This fact guarantees a
between the points andJ, the shock interacts with the pis- constant asymptotic normal rate of growth of the contact
ton with its own first mode. We also see that, at the pojnt Surface ripple, a fundamental parameter that has been the
the second shock mode is excited. The second mode angé!Piect Of intensive research in the last five decades
curve increases and terminates at palntwhere the first L10:12-18,36,37,39,40fiHow would this picture change if

mode curve again crosses the limiting curve. Beyond thone or both of the fluids exhibited spontaneous acoustic

_ e P
point J, there is no longer a second shock oscillation mog&mission at the shocks? It is clear that an exact study of the

! . : effect of SAE on the RMI, for fluids with arbitrary equations
and the f|r§t ShOCk mode does not interact W.'th the sho.ck anys state, is well beyond the limits of this work. However, we
longer. This picture allows us to give a nice interpretation of

' . o h ould get a qualitative image of the changes introduced in
the shock-piston coupling mechanism: the second shoCfe growth dynamics, on the basis of the conclusions that

mode is excited only when the first shock mode successfullyaye peen inferred in the preceding sections. As pointed out
arrives to the shock. It is expected that if there is a possibilitysgme lines above, the classical normal rate of growth of the
of eXCiting a third shock mOde, this will be because the Secinterface in the RMI with ideal gases can be Successfu”y
ond shock mode successfully arrives at the shock. We havgalculated due to the asymptotic incompressibility of the ve-
been unable to get a third shock mode within the range ofocity field, irrespective of the intensity of the incident shock.
parameters used in this work. We have at hand a kind ofhis is one of the ingredients that would be absent if one or
iterative mechanism for the generation of the additional fre-hoth shock fronts started to emit acoustic waves downstream.
quencies at the shock: the mode1 is excited only because The space would be filled with stable sound reverberations
the moden has its rays inside the cone of influence definedyhich do not decay to zero when- o, spoiling some of the
by cos¢=ps. Nested with the shock modes we will have the mathematical simplifications that led to the simple growth
corresponding lower order piston modes. This happens, dfate formula found in Ref[36]. It could be possible, but
course, in some well defined range of the initial parametersiemains to be rigorously proved yet, that the asymptotic nor-
as discussed in Eqe30) and(43). In this way, the role of the  mal velocity in linear theory at the interface could be calcu-
piston is crucial for the excitation of the additional modesjated now in the formév;~ const+.(t). The term const
found here. It is therefore clear that without a piston thesgyould be calculated with a technique similar to that em-
additional oscillation modes will not be generated. This is thep|oyed for ideal gases as has been done in R8%3§, and
reason why the additional frequencies would never be pret _(t) would be that oscillating part that comes from the
dicted with an isolated shock model as has been used in th§aple SAE modes filling the space at both sides of the ma-
past 50 years. terial interface. It should be noted, however, that the function
fosc is likely to be different from zero only in those cases in
which it is the piston that is radiating its own modes. That is,
the effect of the shock SAE modes would not be directly
seen as a stable, asymptotic oscillating contribution to the
In a real experiment, the shock will be driven by a contactgrowth rate. Rather, the SAE modes of the shock would ex-
surface separating two different fluids, which will never be-cite the SAE modes at the piston, and this last excitation is
have exactly as a rigid piston. As is known, when an incidentikely to contribute to the functiori,;. commented on a few
planar shock strikes a corrugated surface that separates tines before. However, the shock SAE modes would enter
fluids with different thermodynamic properties, the corruga-into the const term, through the generation of vorticity
tion at the interface becomes unstable. The phenomenof36,4Q. In the ideal gas case, the vorticity profiles enter into
known as the Richtmyer-Meshkov instabilitgMI) has been the final growth rate calculation as a spatial average. The
intensely studied for half a century, in particular in the iner-value of this average is important to get the exact growth rate
tial fusion community, where corrugated shocks are generin the strong compression situatiof36,37,39,40 In addi-
ated during the implosion of the thermonuclear targetion, in the ideal gas cases, the vorticity profile at either side
[10,12-18. The outcome of théncident shock-contact sur- of the contact surface is an oscillating function of space
faceinteraction is a transmitted shock into the second fluidwhose amplitude decreases asymptotically [iKe*2 This
and another shock or rarefaction is reflected back in the firdlact provides us with a fast and highly accurate algorithm
fluid. The refracted fronts leave an initial circulation at both with which we can calculate the asymptotic normal growth
sides of the material interface, which will be later modified with the desired precision. In the case of the SAE environ-
by the sonic interaction with the escaping fronts because ahent, the shock fronts will not generate a spatially decaying
the acoustic field that fills the whole space. If both fluids arevorticity field away from the interface. On the contrary, the
ideal gases, it is known that the shock front ripples decay tworticity profiles in this case will oscillate with a constant
zero amplitude for large times. As a consequence, the normamplitude. Therefore, the numerical value of the average of
and tangential velocities reach, in both gases, values asymfhis spatial vorticity profile would be different as compared
totically constant in time. For this to happen, each fluid will to the ideal gas case. This characteristic could also change

D. Application of these results to the Richtmyer-Meshkov
instability
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the iteration process with which we obtain the value of constshock after reflection at the contact surface. However, for
It is clear that these effects are a very interesting subejct cfome substances, at high enough compressions, this mode
research which could certainly have a non-negligible impactan actually enter into the cone of influence between shock
in the field of high energy density experiments in fluids withand piston. In this way, the first shock mode successfully
more exotic equations of state. This task is left for futurearrives at the shock surface, which in turn excites the second
work. mode. It is therefore seen, that thanks to successful reflection
at the piston, the second mode is generated by the interaction
VI. CONCLUSIONS of the shock with its own first mode. In a similar way, it is
_ _ _expected that in some other regions of the space of param-
To summarize the work presented here, we briefly revieWeters and at higher compressions, this second mode would
the results obtained and make some further comments. Thgite a third shock mode, after adequate reflection at the
exact solution to the wave equation in the space between @ston, and so on. Nested in this process of shock mode

corrugated pistzon and the corrugated shock was calculatggbneration, we will also see a similar excitation pattern for
whenh<1-2g;. The conditions under which such a solu- the SAE modes at the piston.

tion exhibits modes of stable oscillation have been discussed.
It is seen that, in addition to the well known DK mode of
acoustic emission, the shock could also exhibit offfieite ACKNOWLEDGMENTS
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propagates, the waves emitted into the compressed fluid fi
the space up to the piston surface, and if analogous condi-
tions are satisfied at the piston surfdéey. (43)], the pres- APPENDIX: MODE AMPLITUDES
sure perturbations at the piston will also exhibit stable oscil-
lations. The same could be said for any other mathematica_lf K Jwe. wherefa=f
surface traveling at constant speed, that is,@< 6,. Situa- ~ 0070 0~

The amplitude ay of the standard DK mode isy
0 (iwp), Ko=K(0)(iwp), and

au X(

tions in which these results can be verified, at least theoreti- £ () = ap(q) + ap(q + 26) + [cost(q + 26,)

cally, have been presented by studying a van der Waals equa-

tion of state. Other works that have studied the same subject +ay(q + 209 ]0Ps(q + 26y, (AL)
have been compared with ours and the reasons for agreement

and/or disagreement have been discussed. It has also been wh-1

KO(q) = (A2)

shown that the piston surface plays a prominent role in the
excitation of the additional shock oscillation modes found
here. Normally, from all the waves reflected at the piston,The amplitude of the piston mode #=f,K,/w;, wheref;
only a small portion reaches the shock from behind. In gen=f (iwy), K;=K®(iw,). The functionsf\) andK, are de-
eral, the first shock oscillation mode does not arrive at thdined by

l - a10W(W2 + gé) '

0 Os(\n 2 0s _ 20902 _ (1 — ~405] sp. (20
fgmw)z 450(\),\;v2((;/2v§i 1+ 1) ,© (w?e +1)[(1+a10)w“+(4c\j;(1wzzzc;i(%e1) W2 = (1 — ay0)e %] 6P;(€ sw)’ (A3)

e ¥(wre?ls - 1)
(1 - aggw(wW?+ 223)’

K(w) (A4)

and £,=\Uge %. The amplitude of the second shock mode is giverapyf,K,/w,, wherefzsz&x(iwz), K,=K®@(iw,), and

f2XD = Ny + 264 + ax(q + 4691 + Ao(Q)[COSHQ + 465 + ay(q + 469 ]5P(q + 46y), (A5)

—60, 46, 2
@_€ s(w?etfs — 1)(W? + 1)
K 1-aggv(W?+3) (A6)
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